Tradeoff between Mechanical Strength and Electrical Conductivity of MXene Films by Nacre-Inspired Subtractive Manufacturing
Chao Rong
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorTing Su
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorTianshu Chu
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Mingliang Zhu
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bowei Zhang
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fu-Zhen Xuan
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChao Rong
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorTing Su
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorTianshu Chu
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Mingliang Zhu
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bowei Zhang
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fu-Zhen Xuan
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237 P. R. China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237 P. R. China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Traditional strategies, by additive manufacturing, for integrating monolayer Ti3C2Tx nanosheets into macroscopic films with binders can effectively improve their mechanical strength, but the electrical conductivity is often sacrificed. Herein, inspired by the aligned nano-compacted feature of nacre, a flexible subtractive manufacturing strategy is reported to squeeze the interlayer 2D spacings by removing the nanoconfined water and interface terminations, leading to the improvement of mechanical strength and stability of Ti3C2Tx layered films without sacrificing the electrical conductivity. After the vacuum annealing of Ti3C2Tx films at 300 °C (A300), the interlayer 2D spacing decreased ≈0.1 nm with the surface functional groups (═O, ─OH, ─F) and interlayer water molecules greatly removed. The tensile strength (95.59 MPa) and Young's modulus (9.59 GPa) of A300 are ≈3 and ≈2 times improved, respectively. Moreover, the A300 films maintain a metallic electrical conductivity (2276 S cm−1) and show greatly enhanced stability. Compared to the original films, the mechanical strength of the A300 films is enhanced by increasing the interlayer friction and energy dissipation with the decrease of interlayer 2D spacings. This work provides a new way for engineering the self-assembled films with more functions for broad applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202411329-sup-0001-SuppMat.docx7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng, X. Li, Y. Qin, C. Hu, Y. Qiu, H. Jiang, Y. Wang, Y. Li, J. Tang, J. Liu, H. Guo, T. Deng, S. Peng, H. Tian, T.-L. Ren, Nano-Micro Lett. 2024, 16, 119.
- 2Z. Zhuang, H. Chen, C. Li, ACS Nano 2023, 17, 10628.
- 3Y. Shi, L. Ni, Z. Wang, M. Chen, L. Feng, Coord. Chem. Rev. 2024, 505, 215691.
- 4F. Zeng, R. Wang, W. Wei, Z. Feng, Q. Guo, Y. Ren, G. Cui, D. Zou, Z. Zhang, S. Liu, K. Liu, Y. Fu, J. Kou, L. Wang, X. Zhou, Z. Tang, F. Ding, D. Yu, K. Liu, X. Xu, Nat. Commun. 2023, 14, 6421.
- 5H. Otsuka, K. Urita, N. Honma, T. Kimuro, Y. Amako, R. Kukobat, T. J. Bandosz, J. Ukai, I. Moriguchi, K. kaneko, Nat. Commun. 2024, 15, 1708.
- 6X. Wei, X. Zhang, H. Yu, L. Gao, W. Tang, M. Hong, Z. Chen, Z. Kang, Z. Zhang, Y. Zhang, Nat. Electron. 2024, 7, 138.
- 7C. S. Chang, K. S. Kim, B.-I. Park, J. Choi, H. Kim, J. Jeong, M. Barone, N. Parker, S. Lee, X. Zhang, K. Lu, J. M. Suh, J. Kim, D. Lee, N. M. Han, M. Moon, Y. S. Lee, D.-H. Kim, D. G. Schlom, Y. J. Hong, J. Kim, Sci. Adv. 2023, 9, eadj5379.
- 8Y. Chao, Y. Han, Z. Chen, D. Chu, Q. Xu, G. Wallace, C. Wang, Adv. Sci. 2024, 11, 230558.
- 9S. Wan, X. Li, Y. Wang, Y. Chen, X. Xie, R. Yang, A. P. Tomsia, L. Jiang, Q. Cheng, Proc. Natl. Acad. Sci. USA 2020, 117, 27154.
- 10X. Li, M. Sheng, S. Gong, H. Wu, X. Chen, X. Lu, J. Qu, Chem. Eng. J. 2022, 430, 132928.
- 11J. Rao, Z. Lv, X. Yan, J. Pan, G. Chen, B. Lü, F. Peng, Adv. Funct. Mater. 2024, 34, 2309869.
- 12H. Wang, Y. Wang, J. Chang, J. Yang, H. Dai, Z. Xia, Z. Hui, R. Wang, W. Huang, G. Sun, Nano Lett. 2023, 23, 5663.
- 13C. Rong, T. Su, Z. Li, T. Chu, M. Zhu, Y. Yan, B. Zhang, F.-Z. Xuan, Nat. Commun. 2024, 15, 1566.
- 14A. Lipatov, M. Alhabeb, M. R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Adv. Electron. Mater. 2016, 2, 1600255.
- 15S. Lee, E. H. Kim, S. Yu, H. Kim, C. Park, S. W. Lee, H. Han, W. Jin, K. Lee, C. E. Lee, J. Jang, C. M. Koo, C. Park, ACS Nano 2021, 15, 8940.
- 16Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu, J. Liu, Z. Zeng, Nano-Micro Lett. 2023, 15, 240.
- 17C. Zhang, P.-A. Zong, Z. Ge, Y. Ge, J. Zhang, Y. Rao, Z. Liu, W. Huang, Nano Energy 2023, 118, 109037.
- 18P. Salles, D. Pinto, K. Hantanasirisakul, K. Maleski, C. E. Shuck, Y. Gogotsi, Adv. Funct. Mater. 2019, 29, 1809223.
- 19K. A. S. Usman, J. Zhang, D. Y. Hegh, A. O. Rashed, D. Jiang, P. A. Lynch, P. M. Santiago, K. L. Jarvis, S. Qin, E. L. Prime, M. Naebe, L. C. Henderson, J. M. Razal, Adv. Mater. Interfaces 2021, 8, 2002043.
- 20E. Aydin, J. K. El-Demellawi, E. Yarali, F. Aljamaan, S. Sansoni, A. U. Rehman, G. Harrison, J. Kang, A. El Labban, M. De Bastiani, A. Razzaq, E. Van Kerschaver, T. G. Allen, O. F. Mohammed, T. Anthopoulos, H. N. Alshareef, S. De Wolf, ACS Nano 2022, 16, 2419.
- 21T. Guo, D. Zhou, S. Deng, M. Jafarpour, J. Avaro, A. Neels, J. Heier, C. Zhang, ACS Nano 2023, 17, 3737.
- 22Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan, J. Gu, J. Mater. Sci. Technol. 2022, 103, 42.
- 23W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang, M.-G. Ma, F. Chen, ACS Nano 2018, 12, 4583.
- 24Y. Yi, S. Feng, Z. Zhou, C. Lu, Compos. Part A Appl. Sci. Manuf. 2022, 163, 107232.
- 25Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun, F. M. Gama, Q. Zhang, F. Yao, Z. Yang, H. Luo, Y. Xu, ACS Nano 2021, 15, 8439.
- 26X. Huang, J. Huang, G. Zhou, Y. Wei, P. Wu, A. Dong, D. Yang, Small 2022, 18, 2200829.
- 27Z. Ling, C. E. Ren, M.-Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum, Y. Gogotsi, Proc. Natl. Acad. Sci. USA 2014, 111, 16676.
- 28S. Wan, X. Li, Y. Chen, N. Liu, Y. Du, S. Dou, L. Jiang, Q. Cheng, Science 2021, 374, 96.
- 29D. Lei, Z. Zhang, L. Jiang, Chem. Soc. Rev. 2024, 53, 2300.
- 30Y. Wang, S. Rencus-Lazar, H. Zhou, Y. Yin, X. Jiang, K. Cai, E. Gazit, W. Ji, ACS Nano 2024, 18, 1257.
- 31Z.-B. Zhang, H.-L. Gao, S.-M. Wen, J. Pang, S.-C. Zhang, C. Cui, Z.-Y. Wang, S.-H. Yu, Adv. Mater. 2023, 35, 2209510.
- 32A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C. M. Koo, Science 2020, 369, 446.
- 33C. J. Shearer, A. D. Slattery, A. J. Stapleton, J. G. Shapter, C. T. Gibson, Nanotechnology 2016, 27, 125704.
- 34B. Zhang, T. Chu, Q. Bai, C. Zhu, J. S. Francisco, F. Xuan, Sol. RRL 2022, 6, 2200620.
- 35A. Sarycheva, M. Shanmugasundaram, A. Krayev, Y. Gogotsi, ACS Nano 2022, 16, 6858.
- 36A. Sarycheva, Y. Gogotsi, Chem. Mater. 2020, 32, 3480.
- 37Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan, C. Lu, Adv. Mater. Interfaces 2019, 6, 1802040.
- 38W. Eom, H. Shin, R. B. Ambade, S. H. Lee, K. H. Lee, D. J. Kang, T. H. Han, Nat. Commun. 2020, 11, 2825.
- 39T. Zhou, Y. Yu, B. He, Z. Wang, T. Xiong, Z. Wang, Y. Liu, J. Xin, M. Qi, H. Zhang, X. Zhou, L. Gao, Q. Cheng, L. Wei, Nat. Commun. 2022, 13, 4564.
- 40S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu, L. Jiang, R. H. Baughman, Q. Cheng, Nat. Mater. 2021, 20, 624.
- 41M. Krämer, B. Favelukis, A. A. El-Zoka, M. Sokol, B. A. Rosen, N. Eliaz, S.-H. Kim, B. Gault, Adv. Mater. 2024, 36, 2305183.
- 42Y. I. Jhon, Y. T. Byun, J. H. Lee, Y. M. Jhon, Appl. Surf. Sci. 2020, 532, 147380.
- 43N. Liu, Q. Li, H. Wan, L. Chang, H. Wang, J. Fang, T. Ding, Q. Wen, L. Zhou, X. Xiao, Nat. Commun. 2022, 13, 5551.
- 44W. Eom, H. Shin, W. Jeong, R. B. Ambade, H. Lee, T. H. Han, Mater. Horiz. 2023, 10, 4892.
- 45C. Qiao, H. Wu, X. Xu, Z. Guan, W. Ou-Yang, Adv. Mater. Interfaces 2021, 8, 2100903.
- 46S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion, Y. Gogotsi, J. M. Razal, Adv. Funct. Mater. 2020, 30, 1910504.
- 47J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, Z. Guo, J. Mater. Chem. C 2019, 7, 11710.
- 48Z. Liu, W. Wang, J. Tan, J. Liu, M. Zhu, B. Zhu, Q. Zhang, J. Mater. Chem. C 2020, 8, 7170.
- 49J. Liu, Z. Liu, H.-B. Zhang, W. Chen, Z. Zhao, Q.-W. Wang, Z.-Z. Yu, Adv. Electron. Mater. 2020, 6, 1901094.
- 50M. Alava, K. Niskanen, Rep. Prog. Phys. 2006, 69, 669.
- 51M. B. Dowell, R. A. Howard, Carbon 1986, 24, 311.
- 52Y. Q. Li, T. Yu, T. Y. Yang, L. X. Zheng, K. Liao, Adv. Mater. 2012, 24, 3426.
- 53G.-M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, A. D. Taylor, Adv. Funct. Mater. 2018, 28, 1803360.
- 54R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng, ACS Appl. Mater. Interfaces 2018, 10, 44787.
- 55C. Hu, F. Shen, D. Zhu, H. Zhang, J. Xue, X. Han, Front. Energy Res. 2017, 4, 41.
- 56Z. Liu, Y. Zhang, H.-B. Zhang, Y. Dai, J. Liu, X. Li, Z.-Z. Yu, J. Mater. Chem. C 2020, 8, 1673.