Efficient SWIR Organic Photodetectors with Spectral Detection Extending to 1.4 µm Using a Benzobisthiadiazole-Based Acceptor
Jiawen Cong
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorZhi-Hao Huang
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
Search for more papers by this authorShun-Wei Liu
Organic Electrons Research Center, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Search for more papers by this authorCorresponding Author
Zhenghui Luo
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFu-Zong Liu
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Search for more papers by this authorZhanxiang Chen
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorKun-Mu Lee
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
Search for more papers by this authorCorresponding Author
Yu-Ching Huang
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
Organic Electrons Research Center, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chuluo Yang
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiawen Cong
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorZhi-Hao Huang
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
Search for more papers by this authorShun-Wei Liu
Organic Electrons Research Center, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Search for more papers by this authorCorresponding Author
Zhenghui Luo
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFu-Zong Liu
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Search for more papers by this authorZhanxiang Chen
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorKun-Mu Lee
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
Search for more papers by this authorCorresponding Author
Yu-Ching Huang
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302 Taiwan
Organic Electrons Research Center, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chuluo Yang
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Organic photodetectors (OPDs) offer significant advantages in biomedical applications, including medical imaging, heart rate monitoring, and tumor therapy. Despite advancements in OPD technology, the efficiency of these devices in the short-wave infrared (SWIR) region remains considerably lower than that of inorganic semiconductors. To tackle this challenge, this study developed an ultra-narrow bandgap acceptor of CS-1, featuring an A-D-A1-D-A structure where benzobisthiadiazole (BBT) serves as the electron-deficient unit A1, which exhibits a wide absorption range from 300 to 1550 nm. This molecular design not only enhances the absorption properties of the material but also improves the overall performance of the OPD device. It is worth noting that the optimal PTB7-Th:CS-1 device realizes a specific detectivity (Dn*) of 2.96 × 1010 Jones at 1.30 µm, making it one of the most efficient devices at this wavelength to date. Additionally, it demonstrates the high linear dynamic range (LDR) of 91.9 dB even at 1300 nm. These results indicate that the PTB7-Th:CS-1 device significantly enhances detection efficiency in the SWIR region, surpassing most commercially available silicon-based photodetectors. This highlights the significant potential of the BBT unit for achieving high-performance SWIR OPDs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410418-sup-0001-SuppMat.docx2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Ren, J. Chen, Y. Li, J. Tang, Adv. Sci. 2021, 8, 2002418.
- 2P. C. Y. Chow, T. Someya, Adv. Mater. 2020, 32, 1902045.
- 3J. Xu, Y. Zhang, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2023, 62, 202310838.
- 4J. Lee, S. J. Ko, H. Lee, J. Huang, Z. Zhu, M. Seifrid, J. Vollbrecht, V. V. Brus, A. Karki, H. Wang, K. Cho, T. Q. Nguyen, G. C. Bazan, ACS Energy Lett. 2019, 4, 1401.
- 5J. Chen, J. Wang, X. Li, J. Chen, F. Yu, J. He, J. Wang, Z. Zhao, G. Li, X. Chen, W. Lu, Sensors-Basel 2022, 22, 677.
- 6C. Yen, Y. Huang, Z. Yu, H. Cha, H. Hsiao, Y. Liang, F. Chien, C. Tsao, ACS Appl. Mater. Interfaces 2018, 10, 33399.
- 7L. Lv, W. Dang, X. Wu, H. Chen, T. Wang, L. Qin, Z. Wei, K. Zhang, G. Shen, H. Huang, Macromolecules 2020, 53, 10636.
- 8R. D. Jansen-van Vuuren, A. Armin, A. K. Pandey, P. L. Burn, P. Meredith, Adv. Mater. 2016, 28, 4766.
- 9F. P. G. de Arquer, A. Armin, P. Meredith, E. H Sargent, Nat. Rev. Mater. 2017, 2, 16100.
- 10A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, Nat. Photonics. 2013, 7, 892.
- 11C. Fuentes-Hernandez, W.-F. Chou, T. M. Khan, L. Diniz, J. Lukens, F. A. Larrain, V. A. Rodriguez-Toro, B. Kippelen, Science 2020, 370, 698.
- 12L. Sun, J. Wang, H. Matsui, S. Lee, W. Wang, S. Guo, H. Chen, K. Fang, Y. Ito, D. Inoue, D. Hashizume, K. Mori, M. Takakuwa, S. Lee, Y. Zhou, T. Yokota, K. Fukuda, T. Someya, Sci. Adv. 2024, 10, eadk9460.
- 13Z.-M. Zhong, F. Peng, L. Ying, Z.-Q. Huang, W.-K. Zhong, G. Yu, Y. Cao, F. Huang, Chin. J. Polym. Sci. 2023, 41, 1629.
- 14Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, H. Yu, H. Zhang, Y. Chen, M. Zhao, B. Huang, L. Mei, J. Wang, Adv. Mater. 2017, 29, 1605972.
- 15S. O. Kelley, C. A. Mirkin, D. R. Walt, R. F. Ismagilov, M. Toner, E. H. Sargent, Nat. Nanotechnol. 2014, 9, 969.
- 16T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, O. Hayden, Nat. Photonics. 2009, 3, 332.
- 17B. Yin, X. Zhou, Y. Li, G. Hu, W. Wei, M. Yang, S. Jeong, W. Deng, B. Wu, Y. Cao, B. Huang, L. Pan, X. Yang, Z. Fu, Y. Fang, L. Shen, C. Yang, H. Wu, L. Lan, F. Huang, Y. Cao, C. Duan, Adv. Mater. 2024, 36, 2310811.
- 18W. Wang, X. Miao, G. Cai, L. Ding, Y. Li, T. Li, Y. Zhu, L. Tao, Y. Jia, Y. Liang, X. Lu, Y. Fang, Y. Yi, Y. Lin, Adv. Mater. 2022, 34, 2201600.
- 19L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, F. Zhang, Nat. Commun. 2015, 6, 6938.
- 20Y. Gong, T. Zou, X. Li, S. Qin, G. Sun, T. Liang, R. Zhou, J. Zhang, J. Zhang, L. Meng, Z. Wei, Y. Li, Energy Environ. Sci. 2024, 17, 6844.
- 21G. Zhou, M. Zhang, J. Xu, Y. Yang, T. Hao, L. Zhu, L. Zhou, H. Zhu, Y. Zou, G. Wei, Y. Zhang, F. Liu, Energy Environ. Sci. 2022, 15, 3483.
- 22S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, Y. Cao, Nat. Photonics. 2020, 14, 300.
- 23Z. Luo, W. Wei, R. Ma, G. Ran, M. H. Jee, Z. Chen, Y. Li, W. Zhang, H. Y. Woo, C. Yang, Adv. Mater. 2024, 36, 2407517.
- 24T. Xu, Z. Luo, R. Ma, Z. Chen, T. A. Dela Pena, H. Liu, Q. Wei, M. Li, C. Zhang, J. Wu, X. Lu, G. Li, C. Yang, Angew. Chem., Int. Ed. 2023, 62, 202304127.
- 25W. Wei, C. Zhang, Z. Chen, W. Chen, G. Ran, G. Pan, W. Zhang, P. Buschbaum, Z. Bo, C. Yang, Z. Luo, Angew. Chem., Int. Ed. 2024, 63, 202315625.
- 26J. H. Kim, T. Schembri, D. Bialas, M. Stolte, F. Wurthner, Adv. Mater. 2022, 34, 2104678.
- 27L. Feng, J. Chen, S. Mukherjee, V. Sangwan, W. Huang, Y. Chen, D. Zheng, J. Strzalka, G. Wang, M. Hersam, D. DeLongchamp, A. Facchetti, T. Marks, ACS Energy Lett. 2020, 5, 1780.
- 28W. Cao, X. Zhang, X. Yang, H. Sun, Z. Chen, Y. Liang, ACS Mater. Lett. 2024, 6, 2687.
- 29Q. Wei, W. Liu, M. Leclerc, J. Yuan, H. Chen, Y. Zou, Sci China Chem 2020, 63, 1352.
- 30Q. Nie, A. Tang, Q. Guo, E. Zhou, Nano Energy. 2021, 87, 106174.
- 31H. Ren, J. D. Chen, Y. Li, J. Tang, Adv. Sci. 2020, 8, 2002418.
- 32J. Wang, Y. Xie, K. Chen, H. Wu, J. M. Hodgkiss, X. Zhan, Nat. Rev. Phys. 2024, 6, 365.
- 33A. Zampetti, A. Minotto, F. Cacialli, Adv. Funct. Mater. 2019, 29, 1807623.
- 34Z. Chen, W. Li, M. A. Sabuj, Y. Li, W. Zhu, M. Zeng, C. S. Sarap, M. M. Huda, X. Qiao, X. Peng, D. Ma, Y. Ma, N. Rai, F. Huang, Nat. Commun. 2021, 12, 5889.
- 35J. Fan, J. D. Yuen, M. Wang, J. Seifter, J. Seo, A. Mohebbi, D. Zakhidov, A. Heeger, F. Wudl, Adv. Mater. 2012, 24, 2186.
- 36G. Bhat, M. Kielar, P. Sah, A. Pandey, P. Sonar, Adv. Electron. Mater. 2024, 10, 2300583.
- 37J. Han, D. Yang, L. Hu, D. Ma, W. Qiao, Z. Wang, ChemistrySelect 2018, 3, 7385.
- 38O. V. Mikhnenko, M. Kuik, J. Lin, N. van der Kaap, T. Q. Nguyen, P. W. Blom, Adv. Mater. 2014, 26, 1912.
- 39R. Xie, L. Ying, H. Liao, Z. Chen, F. Huang, Y. Cao, Front Chem 2018, 6, 303.
- 40J. H. Kim, T. Schembri, D. Bialas, M. Stolte, F. Wurthner, Adv. Mater. 2022, 34, 2104678.
- 41W. Li, K. H. Hendriks, A. Furlan, M. M. Wienk, R. A. Janssen, J. Am. Chem. Soc. 2015, 137, 2231.
- 42T. Li, G. Hu, L. Tao, J. Jiang, J. Xin, Y. Li, W. Ma, L. Shen, Y. Fang, Y. Lin, Sci. Adv. 2023, 9, eadf6152.
- 43Y. Zhang, M. Fu, Y. Cao, M. Dong, J. Yu, L. Shao, Z. Hu, H. Cai, C. Liu, F. Huang, Adv. Mater. 2024, 36, 2406950.
- 44T. Liu, Z. Jia, Y. Song, N. Yu, Q. Lin, C. Li, Y. Jia, H. Chen, S. Wang, Y. Wei, Y. Lin, F. Huang, Z. Tang, Y. Li, L. Meng, H. Huang, Adv. Funct. Mater. 2023, 33, 2301167.
- 45X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, A. J. Heeger, Science 2009, 325, 1665.
- 46Y. Wang, M. Yang, B. Yin, B. Wu, G. Liu, S. Jeong, Y. Zhang, C. Yang, Z. He, F. Huang, Y. Cao, C. Duan, ACS Appl. Mater. Interfaces. 2024, 16, 66846.
- 47J.-R. D. Vuuren, A. Armin, A. K. Pandey, P. L. Burn, P. Meredith, Adv. Mater. 2016, 28, 4766.
- 48N. Amin, C. Lee, Y. Huang, C. Shih, R. Estrada, S. Biring, M. Kuo, C. Li, Y. Huang, S. Liu, ACS Appl. Mater. Interfaces 2023, 15, 21284.
- 49O. J. Sandberg, C. Kaiser, S. Zeiske, N. Zarrabi, S. Gielen, W. Maes, K. Vandewal, P. Meredith, A. Armin, Nat. Photonics 2023, 17, 368.
- 50S. Zeiske, N. Zarrabi, O. J. Sandberg, S. Gielen, W. Maes, P. Meredith, A. Armin, Adv. Mater. 2024, 36, 2405061.
- 51S. Gielen, C. Kaiser, F. Verstraeten, J. Kublitski, J. Benduhn, D. Spoltore, P. Verstappen, W. Maes, P. Meredith, A. Armin, K. Vandewal, Adv. Mater. 2020, 32, 2003818.
- 52H. Quan, Z. Zhong, T. Hao, K. An, W. Zhong, C. Wang, F. Liu, L. Ying, F. Huang, Chem. Eng. J. 2023, 452, 139295.
- 53M. Dong, S. Chen, L. Hong, J. Jing, Y. Bai, Y. Liang, C. Zhu, T. Shi, W. Zhong, L. Ying, K. Zhang, F. Huang, Nano Energy 2024, 119, 109097.
- 54S. Xing, V. C. Nikolis, J. Kublitski, E. Guo, X. Jia, Y. Wang, D. Spoltore, K. Vandewal, H. Kleemann, J. Benduhn, K. Leo, Adv. Mater. 2021, 33, 2102967.
- 55L. Chen, R. Ma, J. Y., T. A. D. Peña, H. L., Q. Wei, C. Yan, J. Wu, M. Li, P. Cheng, H. Yan, G. Zhang, G. Li, Aggregate. 2024, 5, e455.