Surface Engineering of Copper Foam to Construct a Hierarchical Heterostructure for High Energy Efficient Supercapacitors
Dandan Jia
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorKe Wang
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Search for more papers by this authorXinyu Wang
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Search for more papers by this authorZhiyuan Zuo
Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorCorresponding Author
Xian Zhao
Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao, 266237 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qiang Shen
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDandan Jia
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorKe Wang
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Search for more papers by this authorXinyu Wang
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Search for more papers by this authorZhiyuan Zuo
Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorCorresponding Author
Xian Zhao
Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao, 266237 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qiang Shen
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
As a unique pseudocapacitive material, the heterojunction-structured CuO@Cu combines the high conductivity of substrate Cu and the high capacity of active CuO together for structure-integral electrodes, however, its structural optimization and improved capacity are still the main challenges so far. In this study, an initial surface etching of copper foam (CF) is adopted to construct a primary heterostructure of CuO nanowires@CF (CuO NW@CF), and then, the surface decoration of CuO NW@CF via the deposition of cerium-2-methylimidazole based metal–organic frameworks (Ce-2MI) finally results in the current-collector-/binder-free electrodes of the hierarchical heterostructure Ce-2MI@CuO NW@CF. Compared to the structural properties of CuO NW@CF, both the introducing Ce-ion active sites and the enriched lattice oxygen vacancies cooperatively endow the pseudocapacitive electrodes of Ce-2MI@CuO NW@CF with a ultrahigh specific capacitance and excellent cycling stability. Within the potential window of 1.6 V, the asymmetric supercapacitor devices of activated carbon//Ce-2MI@CuO NW@CF acquire a high energy density of 56.8 Wh kg−1 at 725 W kg−1, which can light up a light-emitting diode (LED) bulb for 20 min. Therefore, constructing the hierarchically heterostructured Ce-2MI@CuO NW@CF is an effective approach to developing high-performance supercapacitors for potential application purposes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statements
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408572-sup-0001-SuppMat.docx3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
- 2L. Wang, H. Wang, C. Wu, J. Bai, T. He, Y. Li, H. Cheng, L. Qu, Nat. Commun. 2024, 15, 4929.
- 3Y. Ma, L. Zhang, Z. Yan, B. Cheng, J. Yu, T. Liu, Adv. Energy Mater. 2022, 12, 2103820.
- 4W. Dong, M. Xie, S. Zhao, Q. Qin, F. Huang, Mat. Sci. Eng. R 2023, 152, 100713.
- 5S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16.
- 6Q. Li, M. Liu, F. Huang, X. Zuo, X. Wei, S. Li, H. Zhang, Chem. Eng. J. 2022, 437, 135494.
- 7A. Lakshmi, N. Attarzadeh, V. Shutthanandan, C. V. Ramana, Adv. Funct. Mater. 2024, 34, 2316379.
10.1002/adfm.202316379 Google Scholar
- 8M. Sun, X. Ren, Z. Gan, M. Liu, Y. Sun, W. Shen, Z. Li, Y. Fu, Appl. Phys. Rev. 2024, 11, 021318.
- 9X. Huang, B. Chu, B. Han, Q. Wu, T. Yang, X. Xu, F. Wang, B. Li, Small 2024, 20, 2401315.
- 10A. Sumboja, C. Foo, X. Wang, P. Lee, Adv. Mater. 2013, 25, 2809.
- 11W. Lan, X. Zhang, A. Zhai, W. Meng, H. Sheng, W. Dou, C. Zhang, Q. Su, J. Zhou, E. Xie, Chem. Eng. J. 2019, 374, 181.
- 12Y. Zhan, J. Bai, F. Guo, H. Zhou, R. Shu, Y. Yu, L. Qian, J. Alloys Compd. 2021, 885, 161014.
- 13H. Xu, Y. Zhao, J. Zhao, J. Alloys Compd. 2023, 960, 170944.
- 14M. S. Pour, M. R. Gilak, M. Z. Pedram, G. Naikoo, J. Energy Storage 2023, 74, 109330.
10.1016/j.est.2023.109330 Google Scholar
- 15L. Jiang, J. Wang, Y. Yang, J. Zhu, X. Cao, Y. Zhou, Y. Tang, P. Wu, Y. Jing, R. Li, X. Fan, Adv. Energy Mater. 2024, 14, 2400498.
- 16Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 2019, 29, 1809004.
- 17X. Zhang, C. Zhang, A. Abas, Y. Zhang, X. Mu, J. Zhou, Q. Su, W. Lan, E. Xie, Electrochim. Acta 2019, 296, 535.
- 18A. Zhang, L. Yue, D. Jia, L. Cui, D. Wei, W. Huang, R. Liu, Y. Liu, W. Yang, J. Liu, ACS Appl. Mater. Interfaces 2020, 12, 2591.
- 19X. Shu, Y. Wang, J. Cui, G. Xu, J. Zhang, W. Yang, M. Xiao, H. Zheng, Y. Qin, Y. Zhang, Z. Chen, Y. Wu, J. Alloys Compd. 2018, 753, 731.
- 20F. Chen, C. Chao, Q. Hu, B. Xiang, T. Song, X. Zou, W. Li, B. Xiong, M. Deng, Chem. Eng. J. 2020, 401, 126145.
- 21K. Zheng, H. Tan, L. Wang, J. Liu, M. Ding, D. Jia, Adv. Mater. Interfaces 2021, 8, 2002145.
- 22S. Kumar, P. Weng, Y. Fu, Mater. Today Chem. 2022, 26, 101159.
- 23I. Hussain, S. Iqbal, T. Hussain, Y. Chen, M. Ahmad, M. S. Javed, A. AlFantazi, K. Zhang, J. Mater. Chem. A 2021, 9, 17790.
- 24Q. Jin, M. Khandelwal, W. Kim, Energy Storage Mater. 2024, 70, 103464.
- 25S. Shin, J. W. Gittins, C. J. Balhatchet, A. Walsh, A. C. Forse, Adv. Funct. Mater. 2024, 34, 2308497.
- 26P. Sun, Y. Zhang, H. Shi, F. Shi, Chem. Eng. J. 2022, 427, 130836.
- 27I. Hussain, S. Iqbal, T. Hussain, W. L. Cheung, S. A. Khan, J. Zhou, M. Ahmad, S. A. Khan, C. Lamiel, M. Imran, A. AlFantazi, K. Zhang, Mater. Today Phys. 2022, 23, 100655.
- 28B. K. Satpathy, S. Patnaik, D. Pradhan, ACS Appl. Energy Mater. 2022, 5, 77.
- 29S. Demirci, Y. Yildrim, N. Sahiner, Inorg. Chim. Acta 2022, 542, 121110.
- 30Y. Fu, Y. Mao, L. Wang, M. Qiu, Y. Xu, J. Qian, M. Tan, K. Zhang, D. Hao, Q. Wang, G. Yang, J. Alloys Compd. 2023, 967, 171662.
- 31Q. Zhao, W. Zhao, Y. Wu, Carbon 2023, 214, 118374.
- 32Y. He, Z. Fishman, K. Yang, B. Ortiz, C. Liu, J. Goldsamt, V. Batista, L. Pfefferle, J. Am. Chem. Soc. 2018, 140, 1824.
- 33H. Wang, Y. Zhao, S. Yin, Y. Dai, J. Zhao, Z. Wang, B. Xing, J. Hazard. Mater. 2023, 448, 130857.
- 34L. Wen, W. Ye, J. Ning, Y. Zhong, Y. Hu, J. Mater. Chem. A 2022, 10, 15267.
10.1039/D2TA02930H Google Scholar
- 35M. Niu, K. Sui, X. Wu, D. Cao, C. Liu, Adv. Compos. Hybrid. Mater. 2022, 5, 450.
- 36Z. Xu, W. Wang, Y. Xu, S. Song, J. Yu, W. Song, H. Xu, H. Fu, Z. Li, ACS Catal. 2023, 13, 13920.
- 37M. Huang, Y. Han, W. Xiang, C. Wang, J. Mao, T. Zhou, X. Wu, H. Yu, ACS Appl. Mater. Interfaces 2022, 14, 29964.
- 38P. Kumar, G. K. Inwati, M. Chandra Mathpal, S. Ghosh, W. D. Roos, H. C. Swart, Appl. Surf. Sci. 2021, 560, 150026.
- 39L. Yang, R. He, X. Wang, T. Yang, T. Zhang, Y. Zuo, X. Lu, Z. Liang, J. Li, J. Arbiol, P. R. Martinez-Alanis, X. Qi, A. Cabot, Nano Energy 2023, 115, 108714.
- 40Y. Xuan, H. Gao, H. Tian, Z. Hu, J. Ma, Q. Yu, Chem. Eng. J. 2023, 460, 141592.
- 41Y. Liao, Y. Xiao, Z. Li, X. Zhou, J. Liu, F. Guo, J. Li, Y. Li, Small 2024, 20, 2307685.
- 42L. Wan, D. Jiang, Y. Wang, Y. Zhang, C. Du, M. Xie, J. Chen, J. Colloid Interface Sci. 2023, 651, 243.
- 43R. Daiyan, T. Tran-Phu, P. Kumar, K. Iputera, Z. Tong, J. Leverett, M. Khan, A. Esmailpour, A. Jalili, M. Lim, A. Tricoli, R. Liu, X. Lu, E. Lovell, R. Amal, Energy Environ. Sci. 2021, 14, 3588.
- 44D. Pandey, K. Kumar, J. Thomas, Prog. Mater. Sci. 2024, 141, 101219.
- 45H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang, Y. Li, Adv. Energy Mater. 2019, 9, 1803665.
- 46J. Zhang, H. Feng, Q. Qin, G. Zhang, Y. Cui, Z. Chai, W. Zheng, J. Mater. Chem. A 2016, 4, 6357.
- 47A. J. Khan, L. Gao, M. Sajjad, S. Khan, A. Mateen, A. Ghaffar, I. A. Malik, X. Liao, G. Zhao, Inorg. Chem. Commun. 2024, 159, 111794.
- 48J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
- 49W. Wu, Y. Yan, X. Wang, C. Wei, Yang, T. Xu, X. Li, J. Mater. Chem. A 2024, 12, 13818.
- 50J. Wan, G. Fang, S. Mi, H. Yu, J. Xian, M. Fan, Z. Wu, L. Wei, X. Ma, J. Cai, Y. You, D. W. Wang, W. Xu, H. Jiang, H. Jin, Chem. Eng. J. 2024, 488, 150912.
- 51L. Ma, F. Li, M. Zhou, J. Dong, H. Luo, W. Zhang, W. Zhao, X. Li, Z. Jiang, Y. Huang, J. Energy Chem. 2024, 96, 217.
- 52B. Liu, L. Tian, X. Zheng, Z. Xing, J. Alloys Compd. 2022, 911, 165003.
- 53A. R. Nair, B. T. Vetrikarasan, S. K. Shinde, D. Kim, S. N. Sawant, A. D. Jagadale, Fuel 2024, 358, 130217.
- 54D. He, S. Xing, B. Sun, H. Cai, H. Suo, C. Zhao, Electrochim. Acta 2016, 210, 639.
- 55S. Wang, J. Hu, L. Jiang, X. Li, J. Cao, Q. Wang, A. Wang, X. Li, L. Qu, Y. Lu, Electrochim. Acta 2019, 293, 273.
- 56H. Sun, L. Xu, J. Li, Y. Li, T. Wu, F. Yu, X. Guo, H. Zhang, Ceram. Int. 2020, 46, 17461.
- 57J. Guo, L. Li, J. Luo, W. Gong, R. Pan, B. He, S. Xu, M. Liu, Y. Wang, B. Zhang, C. Wang, L. Wei, Q. Zhang, Q. Li, Adv. Energy Mater. 2022, 12, 2201481.
- 58T. Guo, D. Zhou, L. Pang, S. Sun, T. Zhou, J. Su, Small 2022, 18, 2106360.
- 59S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, M. Orazem, Nat. Rev. Methods Primers 2021, 1, 41.
- 60D. Khalafallah, J. Miao, M. Zhi, Z. Hong, J. Taiwan Inst. Chem. E 2021, 122, 168.
- 61S. Prabhu, M. Maruthapandi, A. Durairaj, J. H. T. Luong, A. Gedanken, Energy Fuels 2023, 37, 6824.
- 62M. Z. U. Shah, M. Sajjad, H. Hou, S. U. Rahman, A. Mahmood, U. Aziz, A. Shah, J. Energy Storage 2022, 55, 105492.
- 63J. Chen, Z. Yan, G. Wang, Y. Ding, M. Xiang, Z. Xu, J. Alloys Compd. 2023, 968, 171841.
- 64Y. Liu, X. Cao, D. Jiang, D. Jia, J. Liu, J. Mater. Chem. A 2018, 6, 10474.
- 65Z. Bo, X. Lu, H. Yang, S. Wu, X. Cheng, B. Gong, Z. Huang, J. Yan, K. Cen, K. Ostrikov, J. Energy Storage 2021, 42, 103084.
- 66Z. Bo, K. Yi, H. Yang, X. Guo, Z. Huang, Z. Zheng, J. Yan, K. Cen, K. Ostrikov, J. Power Sources 2021, 492, 229639.