Structural and Electronic Modulations of Se-Vacancy-Rich MoSe2 Triggered by Cr Doping toward Robust Nitrogen Reduction Reaction
Zhuangzhi Wu
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorShuaiting Lv
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorRuoqi Liu
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorTing Guo
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorDezhi Wang
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorCorresponding Author
Hao Fei
School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077 China
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorZhuangzhi Wu
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorShuaiting Lv
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorRuoqi Liu
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorTing Guo
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorDezhi Wang
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorCorresponding Author
Hao Fei
School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077 China
School of Materials Science and Engineering, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The electrocatalytic nitrogen reduction reaction (NRR) is proposed as an alternative to the Haber–Bosch process, but the development of efficient NRR electrocatalysts remains a challenging task. MoSe2 has superior conductivity compared to MoS2, making it promising in the NRR field. Unfortunately, the scarcity of active sites and competitive hydrogen evolution reaction (HER) hinder its broader applications. Here, Se-vacancy-rich MoSe2 is designed through Cr doping, allowing for targeted regulations of architectural and electronic structure by leveraging the dual effects of doping and VSe. Further mechanistic studies innovatively find that the Cr-induced multi-vacancy (18.75% concentration) exerts inverse contributions to NRR on 2H- and 1T-MoSe2, reflecting boosted and depressed effects, respectively. Consequently, suitable doping effectively facilitates NRR and eases the competition from HER, realizing excellent NH3 yield (51.53 ± 2.45 µg h−1 mg−1cat) and Faradaic efficiency (63.37%) in MSC-1. This work paves the opportunity for MoSe2-based electrocatalysts toward boosted NRR.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408243-sup-0001-SuppMat.docx34.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1O. Elishav, B. Mosevitzky Lis, E. M. Miller, D. J. Arent, A. Valera-Medina, A. Grinberg Dana, G. E. Shter, G. S. Grader, Chem. Rev. 2020, 120, 5352.
- 2H. Su, L. Chen, Y. Chen, R. Si, Y. Wu, X. Wu, Z. Geng, W. Zhang, J. Zeng, Angew. Chem., Int. Ed. 2020, 59, 20411.
- 3V. Rosca, M. Duca, M. T. de Groot, M. T. M. Koper, Chem. Rev. 2009, 109, 2209.
- 4K. Ithisuphalap, H. Zhang, L. Guo, Q. Yang, H. Yang, G. Wu, Small Methods 2019, 3, 1800352.
- 5X.-W. Lv, C.-C. Weng, Z.-Y. Yuan, ChemSusChem 2020, 13, 3061.
- 6T.-N. Ye, S.-W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Nature 2020, 583, 391.
- 7J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611.
- 8X. Yang, S. Kattel, J. Nash, X. Chang, J. H. Lee, Y. Yan, J. G. Chen, B. Xu, Angew. Chem., Int. Ed. 2019, 58, 13768.
- 9C. Tang, Y. Zheng, M. Jaroniec, S.-Z. Qiao, Angew. Chem., Int. Ed. 2021, 60, 19572.
- 10J. Chen, H. Cheng, L.-X. Ding, H. Wang, Mater. Chem. Front. 2021, 5, 5954.
- 11X. Yan, D. Liu, H. Cao, F. Hou, J. Liang, S. X. Dou, Small Methods 2019, 3, 1800501.
- 12Z. Wang, C. Li, K. Deng, Y. Xu, H. Xue, X. Li, L. Wang, H. Wang, ACS Sustainable Chem. Eng. 2019, 7, 2400.
- 13H. Wang, H. Feng, J. Li, Small 2014, 10, 2165.
- 14H. Wang, F. Liu, W. Fu, Z. Fang, W. Zhou, Z. Liu, Nanoscale 2014, 6, 12250.
- 15X. Chia, A. Y. S. Eng, A. Ambrosi, S. M. Tan, M. Pumera, Chem. Rev. 2015, 115, 11941.
- 16Y. Pang, C. Su, G. Jia, L. Xu, Z. Shao, Chem. Soc. Rev. 2021, 50, 12744.
- 17H. Liu, H. Guo, B. Liu, M. Liang, Z. Lv, K. R. Adair, X. Sun, Adv. Funct. Mater. 2018, 28, 1707480.
- 18D. Xie, W. Tang, Y. Wang, X. Xia, Y. Zhong, D. Zhou, D. Wang, X. Wang, J. Tu, Nano Res. 2016, 9, 1618.
- 19A. Eftekhari, Appl. Mater. Today 2017, 8, 1.
- 20A. Jain, M. Bar Sadan, A. Ramasubramaniam, J. Phys. Chem. C 2021, 125, 19980.
- 21W. Li, Y. Jiang, Y. Li, Q. Gao, W. Shen, Y. Jiang, R. He, M. Li, Chem. Eng. J. 2021, 425, 130651.
- 22M. Wang, Z. Sun, H. Ci, Z. Shi, L. Shen, C. Wei, Y. Ding, X. Yang, J. Sun, Angew. Chem., Int. Ed. 2021, 60, 24558.
- 23Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei, M. Wang, Y. Ding, J. Sun, Adv. Mater. 2021, 33, 2103050.
- 24Z. Wang, W. Liu, Y. Hu, M. Guan, L. Xu, H. Li, J. Bao, H. Li, Appl. Catal., B 2020, 272, 118959.
- 25Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang, S. Luo, C. Tian, M. Liu, X. Lu, Adv. Mater. 2019, 31, 1900178.
- 26Y.-J. Chung, C.-S. Yang, J.-T. Lee, G. H. Wu, J. M. Wu, Adv. Energy Mater. 2020, 10, 2002082.
- 27N. Li, J. Wu, Y. Lu, Z. Zhao, H. Zhang, X. Li, Y.-Z. Zheng, X. Tao, Appl. Catal., B 2018, 238, 27.
- 28Z. Wu, R. Zhang, H. Fei, R. Liu, D. Wang, X. Liu, Appl. Surf. Sci. 2020, 532, 147372.
- 29X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu, L. Gao, X. Wei, Y. Sun, Q. Liao, Z. Zhang, K. Ammarah, L. Gu, Z. Kang, Y. Zhang, J. Am. Chem. Soc. 2020, 142, 4298.
- 30H. Shu, D. Zhou, F. Li, D. Cao, X. Chen, ACS Appl. Mater. Interfaces 2017, 9, 42688.
- 31H. Fei, R. Liu, J. Wang, T. Guo, F. Liu, Z. Wu, D. Wang, Chem. Eng. J. 2023, 476, 146895.
- 32J. Zhang, Y. Chen, M. Liu, K. Du, Y. Zhou, Y. Li, Z. Wang, J. Zhang, Nano Res. 2018, 11, 4587.
- 33C. Hu, D. Ye, J. Ren, C. Wu, C. Zhao, W. Xu, H. Zhou, T. Yu, X. Luo, C. Yuan, Chem. Commun. 2023, 59, 14721.
- 34H. Yang, P. Zhang, Q. Zheng, T. Ali, S. Raza, Int. J. Hydrogen Energy 2023, 48, 35433.
- 35S. Wu, M. Zhang, S. Huang, L. Cai, D. He, Y. Liu, Chin. Chem. Lett. 2023, 34, 107282.
- 36M. S. Hassan, A. Jana, S. Gahlawat, N. Bhandary, S. Bera, P. P. Ingole, S. Sapra, Bull. Mater. Sci. 2019, 42, 74.
- 37Y. Tong, H. Guo, D. Liu, X. Yan, P. Su, J. Liang, S. Zhou, J. Liu, G. Q., (Max) Lu, S. X. Dou, Angew. Chem. 2020, 132, 7426.
10.1002/ange.202002029 Google Scholar
- 38Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 2019, 31, 1806482.
- 39X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu, Q. Sun, M. Hong, S. T. Pantelides, Z.-G. Chen, J. Zou, Adv. Energy Mater. 2019, 9, 1803242.
- 40F. Lai, W. Zong, G. He, Y. Xu, H. Huang, B. Weng, D. Rao, J. A. Martens, J. Hofkens, I. P. Parkin, T. Liu, Angew. Chem., Int. Ed. 2020, 59, 13320.
- 41N. Luo, C. Chen, D. Yang, W. Hu, F. Dong, Appl. Catal., B 2021, 299, 120664.
- 42W. Song, C. Wang, Y. Liu, K. C. Chong, X. Zhang, T. Wang, Y. Zhang, B. Li, J. Tian, X. Zhang, X. Wang, B. Yao, X. Wang, Y. Xiao, Y. Yao, X. Mao, Q. He, Z. Lin, Z. Zou, B. Liu, J. Am. Chem. Soc. 2024, 146, 29028.
- 43A. Ambrosi, Z. Sofer, M. Pumera, Chem. Commun. 2015, 51, 8450.
- 44G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 2011, 11, 5111.
- 45Y. Qu, H. Medina, S. Wang, Y. Wang, C. Chen, T. Su, A. Manikandan, K. Wang, Y. Shih, J. Chang, H. Kuo, C. Lee, S. Lu, G. Shen, Z. M. Wang, Y. Chueh, Adv. Mater. 2016, 28, 9831.
- 46A. Mondal, H. R. Inta, V. Bheemireddy, S. Ghosh, V. Mahalingam, ChemNanoMat 2021, 7, 1063.
- 47J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.
- 48L. Wang, X. Liu, J. Luo, X. Duan, J. Crittenden, C. Liu, S. Zhang, Y. Pei, Y. Zeng, X. Duan, Angew. Chem., Int. Ed. 2017, 56, 7610.
- 49H. Fei, R. Liu, J. Wang, T. Guo, Z. Wu, D. Wang, F. Liu, Adv. Funct. Mater. 2023, 33, 2302501.
- 50M. Wang, S. Liu, H. Ji, T. Yang, T. Qian, C. Yan, Nat. Commun. 2021, 12, 3198.
- 51R. Liu, H. Fei, J. Wang, T. Guo, F. Liu, J. Wang, Z. Wu, D. Wang, Appl. Catal., B 2023, 337, 122997.
- 52R. Liu, H. Fei, J. Wang, T. Guo, F. Liu, Z. Wu, D. Wang, Appl. Catal., B 2024, 343, 123469.
- 53S. Zhao, X. Lu, L. Wang, J. Gale, R. Amal, Adv. Mater. 2019, 31, 1805367.
- 54Y.-X. Lin, S.-N. Zhang, Z.-H. Xue, J.-J. Zhang, H. Su, T.-J. Zhao, G.-Y. Zhai, X.-H. Li, M. Antonietti, J.-S. Chen, Nat. Commun. 2019, 10, 4380.
- 55R. Liu, T. Guo, H. Fei, Z. Wu, D. Wang, F. Liu, Adv. Sci. 2022, 9, 2103583.
- 56X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc. 2020, 142, 5709.
- 57C. Cui, H. Zhang, R. Cheng, B. Huang, Z. Luo, ACS Catal. 2022, 12, 14964.
- 58R. Yu, Z. Liu, D. Legut, J. Sun, Q. Zhang, J. S. Francisco, R. Zhang, ACS Catal. 2024, 14, 10568.
- 59G. Lin, Q. Ju, X. Guo, W. Zhao, S. Adimi, J. Ye, Q. Bi, J. Wang, M. Yang, F. Huang, Adv. Mater. 2021, 33, 2007509.
- 60X. Shen, H. Li, Y. Zhang, T. Ma, Q. Li, Q. Jiao, Y. Zhao, H. Li, C. Feng, Appl. Catal., B 2022, 319, 121917.
- 61Y. Wu, C. He, W. Zhang, J. Am. Chem. Soc. 2022, 144, 9344.