Multiplex Biomimetic SLIPS With Super-Lubricity to Multiphase Matters
Xiaorui Song
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
Search for more papers by this authorCorresponding Author
Yuanyuan Hou
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiuli Zhang
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
Search for more papers by this authorYuanliang Zhao
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
Search for more papers by this authorYongling Wu
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
Search for more papers by this authorCorresponding Author
Mingming Liu
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiguang Guo
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiaorui Song
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
Search for more papers by this authorCorresponding Author
Yuanyuan Hou
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiuli Zhang
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
Search for more papers by this authorYuanliang Zhao
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
Search for more papers by this authorYongling Wu
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
Search for more papers by this authorCorresponding Author
Mingming Liu
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000 P. R. China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiguang Guo
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
In recent years, slippery liquid infused porous surfaces (SLIPS) renowned for their exceptional liquid repellency and anti-fouling properties, have garnered considerable attention. However, the instability of both structural integrity and the oil film severely restricts their practical applications. This study is inspired by superwetting biological surfaces, such as fish scales, seashells, and Nepenthes, to design and fabricate a multiplex biomimetic and robust lubricant-infused textured surface (LITMS) using laser-coating composite processing technology. The influence of morphological structure and chemical composition on oil stability, wettability, and lubricating properties are systematically investigated. The LITMS exhibits remarkable repellency toward multiphase materials, including liquids, ice crystals, and solids, demonstrating exceptional omniphobicity, anti-icing, and anti-friction properties. Thus, this preparation strategy and construction methodology for SLIPS provide new insights into interfacial phenomena and promote advancements in applications for engineering material protection and machinery lubrication.
Conflict of Interest
The authors declare no conflict of interest
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202407530-sup-0001-SuppMat.docx10.2 MB | Supporting Information |
smll202407530-sup-0002-MovieS1.mp4626.9 KB | Supplemental Movie 1 |
smll202407530-sup-0003-MovieS2.mp43.1 MB | Supplemental Movie 2 |
smll202407530-sup-0004-MovieS3.mp41.8 MB | Supplemental Movie 3 |
smll202407530-sup-0005-MovieS4.mp41.3 MB | Supplemental Movie 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Chen, W. Liu, J. Huang, Z. Guo, Friction 2021, 10, 1676.
10.1007/s40544-021-0533-1 Google Scholar
- 2Y. Tuo, H. Zhang, W. Chen, X. Liu, Appl. Surf. Sci. 2017, 423, 365.
- 3A. K. Epstein, T. S. Wong, R. A. Belisle, E. M. Boggs, J. Aizenberg, Proc. Natl. Acad. Sci. USA 2012, 109, 13182.
- 4P. Agrawal, T. T. Salomons, D. S. Chiriac, A. C. Ross, R. D. Oleschuk, ACS Appl. Mater. Interfaces 2019, 11, 28327.
- 5T. S. Wong, S. H. Kang, S. K. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature 2011, 477, 443.
- 6P. Wang, T. Li, D. Zhang, Corros. Sci. 2017, 128, 110.
- 7Y. Xu, M. Liu, Surf. Coat. Technol. 2016, 307, 332.
- 8J. Li, T. Kleintschek, A. Rieder, Y. Cheng, T. Baumbach, U. Obst, T. Schwartz, P. A. Levkin, ACS Appl. Mater. Interfaces 2013, 5, 6704.
- 9B. S. Lalia, S. Anand, K. K. Varanasi, R. Hashaikeh, Langmuir 2013, 29, 13081.
- 10W. Ma, Y. Higaki, H. Otsuka, A. Takahara, Chem. Commun. 2013, 49, 597.
- 11X. Song, Z. Hou, Z. Gan, Y. Hu, H. Zheng, Y. Wu, M. Liu, Friction 2024, 12, 2707.
10.1007/s40544-024-0906-3 Google Scholar
- 12S. Sett, X. Yan, G. Barac, L. W. Bolton, N. Miljkovic, ACS Appl. Mater. Interfaces 2017, 9, 36400.
- 13J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, K. K. Varanasi, Soft Matter 2013, 9, 1772.
- 14C. Urata, G. J. Dunderdale, M. W. England, A. Hozumi, J. Mater. Chem. A 2015, 3, 12626.
- 15L. Zhu, J. Xue, Y. Wang, Q. Chen, J. Ding, Q. Wang, ACS Appl. Mater. Interfaces 2013, 5, 4053.
- 16S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith, K. K. Varanasi, ACS Nano 2012, 6, 10122.
- 17M. J. Hoque, S. Sett, X. Yan, D. Liu, K. F. Rabbi, H. Qiu, M. Qureshi, G. Barac, L. Bolton, N. Miljkovic, ACS Appl. Mater. Interfaces 2022, 14, 4598.
- 18P. Jin, X. Yan, M. J. Hoque, K. F. Rabbi, S. Sett, J. Ma, J. Li, X. Fang, J. Carpenter, S. Cai, Cell Rep Phys Sci 2022, 3, 100894.
- 19C. S. Ware, T. Smith-Palmer, S. Peppou-Chapman, L. R. Scarratt, E. M. Humphries, D. Balzer, C. Neto, ACS Appl. Mater. Interfaces 2018, 10, 4173.
- 20D. Zhao, X.-d. Xu, S.-s. Yuan, S.-j. Yan, X.-h. Wang, S.-f. Luan, J.-h. Yin, Chin. J. Polym. Sci. 2017, 35, 887.
- 21R. Mukherjee, M. Habibi, Z. T. Rashed, O. Berbert, X. Shi, J. B. Boreyko, Sci. Rep. 2018, 8, 11698.
- 22L. Zhang, Z. Guo, J. Sarma, X. Dai, ACS Appl. Mater. Interfaces 2020, 12, 20084.
- 23M. Yu, M. Liu, S. Fu, ACS Appl. Mater. Interfaces 2021, 13, 32149.
- 24H. Fan, Z. Guo, New J. Chem. 2020, 44, 15483.
- 25A. B. Gurav, H. Shi, M. Duan, X. Pang, X. Li, Chem. Eng. J. 2021, 416, 127809.
- 26K. Sakuraba, S. Kitano, D. Kowalski, Y. Aoki, H. Habazaki, ACS Appl. Mater. Interfaces 2021, 13, 45089.
- 27C. Wei, G. Zhang, Q. Zhang, X. Zhan, F. Chen, ACS Appl. Mater. Interfaces 2016, 8, 34810.
- 28J. Sun, C. Wang, J. Song, L. Huang, Y. Sun, Z. Liu, C. Zhao, Y. Li, J. Mater. Sci. 2018, 53, 16099.
- 29M. Xie, Y. Wang, W. Zhao, Colloid Surface B 2021, 197, 111375
- 30N. Wang, D. Xiong, S. Pan, Y. Deng, Y. Shi, Appl. Surf. Sci. 2016, 387, 1219.
- 31M. Villegas, Y. Zhang, N. Abu Jarad, L. Soleymani, T. F. Didar, ACS Nano 2019, 13, 8517.
- 32J. Yong, F. Chen, Q. Yang, Y. Fang, J. Huo, J. Zhang, X. Hou, Adv. Mater. Interfaces 2017, 4, 1700552.
- 33H. Shams, K. Basit, M. A. Khan, A. Mansoor, S. Saleem, Addit. Manuf. 2021, 48, 102379.
- 34L. Y. L. Wu, Q. Shao, X. C. Wang, H. Y. Zheng, C. C. Wong, Soft Matter 2012, 8, 6232.
- 35N. Keller, J. Bruchmann, T. Sollich, C. Richter, R. Thelen, F. Kotz, T. Schwartz, D. Helmer, B. E. Rapp, ACS Appl. Mater. Interfaces 2019, 11, 4480.
- 36L. B. Mao, H. L. Gao, H. B. Yao, L. Liu, H. Cölfen, G. Liu, S. M. Chen, S. K. Li, Y. X. Yan, Y. Y. Liu, Science 2016, 354, 107.
- 37W. Ye, M. Xie, Z. Huang, H. Wang, Q. Zhou, L. Wang, B. Chen, H. Wang, W. Liu, Tribol. Int. 2023, 181, 108295.
- 38J. Feng, B. Safaei, Z. Qin, F. Chu, Compos. Sci. Technol. 2023, 233, 109925.
- 39X. Cui, C. Li, M. Yang, M. Liu, T. Gao, X. Wang, Z. Said, S. Sharma, Y. Zhang, Tribol. Int. 2023, 186, 108603.
- 40T. Xiang, M. Zhang, H. R. Sadig, Z. Li, M. Zhang, C. Dong, L. Yang, W. Chan, C. Li, Chem. Eng. J. 2018, 345, 147.
- 41X. Song, N. Li, Z. Wang, S. Li, Y. Hou, Front Chem 2023, 11, 1273674.
- 42C. Qiu, L. Jiang, Y. Gao, L. Sheng, Mater. Des. 2023, 230, 111952.
- 43X. Zhang, K. Wu, Y. Ni, L. He, Nat. Commun. 2022, 13, 7719.
- 44N. Savjani, V. O. Mercadillo, D. Hodgeman, G. Paterakis, Y. Deng, C. Vallés, G. Anagnostopoulos, C. Galiotis, M. A. Bissett, I. A. Kinloch, ACS Appl. Nano Mater 2023, 6, 8202.
- 45L. Silipigni, G. Salvato, G. Di Marco, B. Fazio, A. Torrisi, M. Cutroneo, L. Torrisi, Vacuum 2019, 165, 254.
- 46T. Shi, S. Xue, X. Ma, H. Peng, J. Du, B. Zheng, Z. Xia, Appl. Phys. A 2021, 127, 399.
- 47J. Wang, Y. Lu, Q. Chu, C. Ma, L. Cai, Z. Shen, H. Chen, Polymers 2020, 12, 813.
- 48J. Lee, S. Sett, N. Miljkovic, Langmuir 2022, 39, 367.
- 49R. Stoddard, K. Nithyanandam, R. Pitchumani, J. Colloid Interface Sci. 2022, 608, 662.
- 50A. M. Fuller, R. Pitchumani, Langmuir 2023, 39, 9885.
- 51S. Yuan, J. Peng, X. Zhang, D. Lin, H. Geng, B. Han, M. Zhang, H. Wang, Chem. Eng. J. 2021, 415, 128953.
- 52S. Xing, Y. Zhao, C. Tian, C. Lv, M. Lin, Y. Wang, G. Li, X. Liao, J. Supercrit 2025, 215, 106415.
- 53Z. Yang, X. He, T. Lou, X. Bai, C. Yuan, Prog. Org. Coat. 2023, 185, 107919.
- 54X. Yin, Y. Zhang, D. Wang, Z. Liu, Y. Liu, X. Pei, B. Yu, F. Zhou, Adv. Funct. Mater 2015, 25, 4237.
- 55Y. Yan, J. Wang, J. Gao, Y. Ma, Colloids Surf., A 2022, 654, 129994.
- 56P. Wang, Z. Li, Q. Xie, W. Duan, X. Zhang, H. Han, J. Bionic Eng. 2021, 18, 55.
- 57Q. Zhang, Y. Li, F. Liang, H. Zhang, B. Wang, X. Li, Z. Lin, Y. Lin, X. Chen, Adv. Funct. Mater 2024, 34, 2401231.
- 58D. Zhang, B. Ranjan, T. Tanaka, K. Sugioka, Int. J. Extreme Manuf 2020, 2, 015001.
- 59D. Z. Segu, C. Lu, P. Hwang, S. W. Kang, J. Mater. Eng. Perform. 2021, 30, 3786.