3D-Printed Hierarchical Nanostructured N-Co2NiO4 NF Electrode for Efficient Concurrent Electrocatalytic Production of Hydrogen and Formate
Zhaojing Han
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHanwen Tao
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorGang Wang
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorChuanting Fan
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Jie Zhang
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiyong Tang
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhaojing Han
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHanwen Tao
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorGang Wang
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorChuanting Fan
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Jie Zhang
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiyong Tang
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 P. R. China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Replacing the oxygen evolution reaction with the alternative glycerol electro-oxidation reaction (GER) provides a promising strategy to enhance the efficiency of hydrogen production via water electrolysis while co-generating high-value chemicals. However, obtaining low-cost and efficient GER electrocatalysts remains a big challenge. Herein, a self-supported N-doped Co2NiO4 nanoflakes (N-Co2NiO4 NF) is proposed for efficient electrocatalytic oxidation of glycerol to formate. The synergistic effect induced by the interaction of the layered Co2NiO4 nanostructures on the 3D-printed Nickel-Yttria-stabilized zirconia (Ni-YSZ) substrate and the amorphous nitrogen-doping promotes the anodic GER. The N-Co2NiO4 NF exhibits low potentials of 1.07 and 1.18 V (vs. RHE) for GER to drive 10 and 50 mA cm−2, respectively. The constituted two-electrode electrolyzer (N-Co2NiO4 NF//NiS-Co-NiP) displays excellent activity that only requires ultralow cell voltages of 1.24 and 1.55 V to afford 10 and 200 mA cm−2, respectively, with a high FE (97%) for formate production and an excellent durability (120 h). This study provides a versatile approach for manufacturing high-performance Ni-based electrocatalyst for GER, paving the way for the energy-saving and environmentally-friendly co-production of value-added chemicals and hydrogen.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202407349-sup-0001-SuppMat.docx7.2 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. David, C. Ocampo-Martínez, R. Sánchez-Peña, J. Energy Storage 2019, 23, 392.
- 2S. Li, M. Li, Y. Ni, Appl. Catal., B 2020, 268, 118392.
- 3D. Song, D. Hong, Y. Kwon, H. Kim, J. Shin, H. M. Lee, E. Cho, J. Mater. Chem. A 2020, 8, 12069.
- 4H.-S. Hu, Y. Li, Y.-R. Shao, K.-X. Li, G. Deng, C.-B. Wang, Y.-Y. Feng, J. Power Sources 2021, 484, 229269.
- 5P. Babar, A. Lokhande, V. Karade, B. Pawar, M. G. Gang, S. Pawar, J. H. Kim, ACS Sustainable Chem. Eng. 2019, 7, 10035.
- 6S. Feng, R. Xu, X. Wang, W. Wang, C. Chen, A. Ju, Y. Zhang, Y. Ju, Int. J. Electrochem. Sci. 2020, 15, 2806.
- 7S. Chen, C. Wang, S. Liu, M. Huang, J. Lu, P. Xu, H. Tong, L. Hu, Q. Chen, J. Phys. Chem. Lett. 2021, 12, 4849.
- 8T. Wondimu, G. Chen, D. Kabtamu, H. Chen, A. Bayeh, H. Huang, C. Wang, Int. J. Hydrogen Energy 2018, 43, 6481.
- 9A. Ali, F. Long, P. K. Shen, Electrochem. Energy Rev. 2022, 5, 1.
- 10X. Yang, G. Wang, D. Zhang, H. Zhang, Q. Yan, M. Zhu, K. Ye, K. Zhu, K. Cheng, J. Yan, D. Cao, W. Jiao, Y. Liu, Int. J. Hydrogen Energy 2019, 44, 226.
- 11S. Wang, D. Yuan, S. Sun, S. Huang, Y. Wu, L. Zhang, S. X. Dou, H. K. Liu, Y. Dou, J. Xu, Small 2024, 20, 2311770.
- 12A. Wang, X. Yang, X. Zhai, Y. Dou, K. Syed, L. Zhao, W. Zhu, Electrochim. Acta 2024, 491, 144324.
- 13R. Qin, G. Chen, X. Feng, J. Weng, Y. Han, Adv. Sci. 2024, 11, 202309364.
- 14Y. Xiang, L. Yu, K. Xiong, H. Zhang, J. Chen, X. Shi, M. Deng, S. She, Int. J. Hydrogen Energy 2024, 64, 360.
- 15F. S. Alamro, S. S. Medany, N. S. Al-Kadhi, A. M. Mostafa, W. F. Zaher, H. A. Ahmed, M. A. Hefnawy, Catalysts 2024, 14, 329.
- 16Q. Liu, F. Zhao, X. Yang, J. Zhu, S. Yang, L. Chen, P. Zhao, Q. Wang, Q. Zhang, J. Mater. Sci. Technol. 2024, 203, 97.
- 17J. Ma, W. Wei, G. Qin, S. Jin, S. Liu, L. Jiang, Chem. Eng. J. 2024, 486, 150240.
- 18X. Yin, J. Wen, J. Zhao, R. An, R. Zhang, Y. Xiong, Y. Tao, L. Wang, Y. Liu, H. Zhou, Y. Huang, Molecules 2024, 29, 2339.
- 19M.-H. Tsai, Y. Juang, C.-C. Hu, L.-C. Hua, C. Huang, J. Environ. Chem. Eng. 2024, 12, 112339.
- 20W. Tan, Y. Ye, X. Sun, B. Liu, J. Zhou, H. Liao, X. Wu, R. Ding, E. Liu, P. Gao, Acta. Phys. Chim. Sin. 2024, 40, 2306054.
10.3866/PKU.WHXB202306054 Google Scholar
- 21V. V. Burungale, H. Bae, M. A. Gaikwad, P. Mane, J. Heo, C. Seong, S.-H. Kang, S.-W. Ryu, J.-S. Ha, Chem. Eng. J. 2024, 486, 150175.
- 22N. Ullah, D. Guziejewski, K. Koszelska, S. Smarzewska, M. Malecka, K. Ranoszek-Soliwoda, J. Grobelny, Energy Technol. 2024, 12, 2400075.
- 23B. D. Mert, B. N. Demir, C. Edis, S. Akyildiz, C. Ozgur, M. E. Mert, Arabian J. Sci. Eng. 2024, 49, 9517.
10.1007/s13369-024-08905-x Google Scholar
- 24R. Parihar, P. Mishra, P. K. Yadav, N. K. Singh, Energy Technol. 2024, 12, 202400221.
10.1002/ente.202400221 Google Scholar
- 25S. S. Aristides, C. V. da, S. Almeida, K. I. B. Eguiluz, G. R. Salazar-Banda, Chem. Phys. Lett. 2023, 832, 140864.
- 26C. S. Santana, E. Gjonaj, A. C. Garcia, ChemElectroChem 2024, 11, 202300570.
- 27L. Dong, G.-R. Chang, Y. Feng, X.-Z. Yao, X.-Y. Yu, Rare Met. 2022, 41, 1583.
- 28B. Liu, G. Wang, X. Feng, L. Dai, Z. Wen, S. Ci, Nanoscale 2022, 14, 12841.
- 29G. Ma, N. Yang, G. Zhou, X. Wang, Nano Res. 2022, 15, 1934.
- 30Y. Pei, Z. Pi, H. Zhong, J. Cheng, F. Jin, J. Mater. Chem. A 2022, 10, 1309.
- 31R.-Y. Fan, X.-J. Zhai, W.-Z. Qiao, Y.-S. Zhang, N. Yu, N. Xu, Q.-X. Lv, Y.-M. Chai, B. Dong, Nano-Micro Lett. 2023, 15, 190.
- 32S. Li, P. Ma, C. Gao, L. Liu, X. Wang, M. Shakouri, R. Chernikov, K. Wang, D. Liu, R. Ma, J. Wang, Energy Environ. Sci. 2022, 15, 3004.
- 33J. Ma, X. Wang, J. Song, Y. Tang, T. Sun, L. Liu, J. Wang, J. Wang, M. Yang, Angew. Chem., Int. Ed. 2024, 63, 202319153.
- 34L. Xu, Y. Yang, C. Li, R. Ning, J. Ma, M. Yao, S. Geng, F. Liu, Chem. Eng. J. 2024, 481, 148304.
- 35Y. Xu, M. Liu, S. Wang, K. Ren, M. Wang, Z. Wang, X. Li, L. Wang, H. Wang, Appl. Catal., B 2021, 298, 120493.
- 36G. Wu, X. Dong, J. Mao, G. Li, C. Zhu, S. Li, A. Chen, G. Feng, Y. Song, W. Chen, W. Wei, Chem. Eng. J. 2023, 468, 143640.
- 37S. Parrilla-Lahoz, W. Jin, L. Pastor-Perez, D. Carrales-Alvarado, J. A. Odriozola, A. B. Dongil, T. R. Reina, Appl. Catal., A 2021, 611, 117977.
- 38Y. Xu, T. Liu, K. Shi, H. Yu, K. Deng, X. Wang, Z. Wang, L. Wang, H. Wang, J. Mater. Chem. A 2022, 10, 20365.
- 39Z. Han, H. Zhao, C. Peng, C. Fan, G. Wang, J. Zhang, Z. Tang, Int. J. Hydrogen Energy 2024, 64, 476.
- 40C. Pitchai, M. Vedanarayanan, S. Mathur Gopalakrishnan, New J. Chem. 2023, 47, 14355.
- 41B. Shateesh, G. B. Markad, S. K. Haram, Electrochim. Acta 2016, 200, 53.
- 42M. Cao, X. Li, D. Xiang, D. Wu, S. Sun, H. Dai, J. Luo, H. Zou, Catalysts 2021, 11, 1237.
- 43T. N. J. I. Edison, R. Atchudan, N. Karthik, Y. R. Lee, Int. J. Hydrogen Energy 2017, 42, 14390.
- 44G. Tian, S. Wei, Z. Guo, S. Wu, Z. Chen, F. Xu, Y. Cao, Z. Liu, J. Wang, L. Ding, J. Tu, H. Zeng, J. Mater. Sci. Technol. 2021, 77, 108.
- 45W. Zhu, W. Chen, H. Yu, Y. Zeng, F. Ming, H. Liang, Z. Wang, Appl. Catal., B 2020, 278, 119326.
- 46A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 2016, 26, 4661.
- 47Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Nat. Commun. 2020, 11, 1853.
- 48Q. He, D. Tian, H. Jiang, D. Cao, S. Wei, D. Liu, P. Song, Y. Lin, L. Song, Adv. Mater. 2020, 32, 1906972.
- 49S. Qu, J. Huang, J. Yu, G. Chen, W. Hu, M. Yin, R. Zhang, S. Chu, C. Li, ACS Appl. Mater. Interfaces 2017, 9, 29660.
- 50X. Fan, B. Li, C. Zhu, F. Yan, X. Zhang, Y. Chen, Small 2024, 20, 2309655.
- 51H. Wang, C. Xu, Q. Chen, M. Ming, Y. Wang, T. Sun, Y. Zhang, D. Gao, J. Bi, G. Fan, ACS Sustainable Chem. Eng. 2019, 7, 1178.
- 52B. Qiu, Y. Zhang, X. Guo, Y. Ma, M. Du, J. Fan, Y. Zhu, Z. Zeng, Y. Chai, J. Mater. Chem. A 2022, 10, 719.
- 53Y. Pei, Y. Yang, F. Zhang, P. Dong, R. Baines, Y. Ge, H. Chu, P. M. Ajayan, J. Shen, M. Ye, ACS Appl. Mater. Interfaces 2017, 9, 31887.
- 54Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, ACS Appl. Mater. Interfaces 2016, 8, 33601.
- 55J. Hou, Y. Sun, Y. Wu, S. Cao, L. Sun, Adv. Funct. Mater. 2018, 28, 1704447.
- 56K. Fernandez-Caso, M. Molera, T. Andreu, J. Solla-Gullon, V. Montiel, G. Diaz-Sainz, M. Alvarez-Guerra, A. Irabien, Chem. Eng. J. 2024, 480, 147908.
- 57S. Wang, Y. Yan, Y. Du, Y. Zhao, T. Li, D. Wang, P. Schaaf, X. Wang, Adv. Funct. Mater. 2024, 34, 202404290.
- 58J. Zhang, Y. Shen, H. Li, ACS Appl. Energy Mater. 2023, 6, 5508.
- 59X. Liu, Z. Fang, X. Teng, Y. Niu, S. Gong, W. Chen, T. J. Meyer, Z. Chen, J. Energy Chem. 2022, 72, 432.