Self-Oxidated Hybrid Conductive Network Enables Efficient Electrochemical Lithium Extraction Under High-Altitude Environment
Zhixin Wan
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorZiqi Liu
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorYiyang Xiao
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorQinqin Ruan
Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorQian Wang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorHaitao Zhang
Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Meng Yao
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yun Zhang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhixin Wan
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorZiqi Liu
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorYiyang Xiao
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorQinqin Ruan
Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorQian Wang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorHaitao Zhang
Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Meng Yao
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yun Zhang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The electrochemical deintercalation method has been considered as an effective way to address the demand for lithium resources due to its environmental friendliness, high selectivity, and high efficiency. However, the performance of electrochemical lithium extraction is closely dependent on the electrode material and needs to be compatible under plateau environments with high-altitude and low-temperature. Herein, an in situ self-oxidation method is conducted to construct a hybrid conductive network on the surface of LiFePO4 (LFP-HN). The introduction of a hybrid conductive network enhanced the interfacial electron/lithium-ion transfer. In addition, structural stability is strengthened through suppressing the intercalation of impurity cations. Consequently, the LFP-HN delivered extremely high lithium extraction capacity (27.42 mg g−1), low energy consumption (4.91 Wh mol−1), and superior purity (91.05%) in Baqiancuo real brine (4788 m, −10 °C). What's more, LFP-HN-based large-scale prototypes are constructed and operated at Baqiancuo, which is calculated to extract 25 kg Lithium Carbonate Equivalent per cycle (4.55 h, 100 pairs of plates). Based on the excellent performance, the modification strategy developed in this work can be a promising solution for industrial lithium extraction under high-altitude environment.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202406607-sup-0001-SuppMat.docx29.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.
- 2L. Chen, Y. Chao, X. Li, G. Zhou, Q. Lu, M. Hua, H. Li, X. Ni, P. Wu, W. Zhu, Green Chem. 2021, 23, 2177.
- 3U. S. G. Survey, in Mineral Commodity Summaries, U. S. G. Survey, Reston, VA 2024.
- 4X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, J. Li, J. Membr. Sci. 2019, 591, 117317.
- 5S. M. Bulatovic, in Handbook of Flotation Reagents: Chemistry, Theory and Practice, (Ed: S. M. Bulatovic), Elsevier, Amsterdam 2015.
- 6V. Flexer, C. F. Baspineiro, C. I. Galli, Sci. Total Environ. 2018, 639, 1188.
- 7U. S. G. Survey, in Mineral Commodity Summaries, U. S. G. Survey, Reston, VA 2023.
- 8F. Meng, J. McNeice, S. S. Zadeh, A. Ghahreman, Miner. Process. Extr. Metall. Rev. 2021, 42, 123.
- 9A. Razmjou, M. Asadnia, E. Hosseini, A. Habibnejad Korayem, V. Chen, Nat. Commun. 2019, 10, 5793.
- 10A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Desalination 2022, 528, 115611.
- 11P. Xu, J. Hong, X. Qian, Z. Xu, H. Xia, X. Tao, Z. Xu, Q.-Q. Ni, J. Mater. Sci. 2021, 56, 16.
- 12X. Lai, P. Xiong, H. Zhong, Hydrometallurgy 2020, 192, 105252.
- 13C. Xiao, L. Zeng, Hydrometallurgy 2018, 178, 283.
- 14D. Shi, B. Cui, L. Li, M. Xu, Y. Zhang, X. Peng, L. Zhang, F. Song, L. Ji, Desalination 2020, 479, 114306.
- 15D. Shi, B. Cui, L. Li, X. Peng, L. Zhang, Y. Zhang, Sep. Purif. Technol. 2019, 211, 303.
- 16L. Shan, J. Gu, H. Fan, S. Ji, G. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 44820.
- 17L. Fu, Y. Teng, P. Liu, W. Xin, Y. Qian, L. Yang, X. Lin, Y. Hu, X.-Y. Kong, L. Jiang, L. Wen, Chem. Eng. J. 2022, 435, 134955.
- 18S. Lv, Y. Zhao, L. Zhang, T. Zhang, G. Dong, D. Li, S. Cheng, S. Ma, S. Song, M. Quintana, Chem. Eng. J. 2023, 472, 145026.
- 19C.-L. Yu, J. Song, Q.-J. Ning, D.-B. Jin, H. Cheng, H. Li, H. Liu, Z.-H. Zhao, Hydrometallurgy 2021, 203, 105627.
- 20W. Ding, J. Zhang, Y. Liu, Y. Guo, T. Deng, X. Yu, Chem. Eng. J. 2021, 426, 131689.
- 21G. Luo, X. Li, L. Chen, Y. Chao, W. Zhu, Desalination 2023, 548, 116228.
- 22Y. Sun, X. Guo, S. Hu, X. Xiang, J. Energy Chem. 2019, 34, 80.
- 23G. Yan, M. Wang, G. T. Hill, S. Zou, C. Liu, Proc. Nat. Acad. Sci. U S A 2022, 119, e2200751119.
- 24H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 1993, 28, 643.
- 25C. Liu, Y. Li, D. Lin, P.-C. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 2020, 4, 1459.
- 26M.-Y. Zhao, Z.-Y. Ji, Y.-G. Zhang, Z.-Y. Guo, Y.-Y. Zhao, J. Liu, J.-S. Yuan, Electrochim. Acta 2017, 252, 350.
- 27G. Yan, G. Kim, R. Yuan, E. Hoenig, F. Shi, W. Chen, Y. Han, Q. Chen, J.-M. Zuo, W. Chen, C. Liu, Nat. Commun. 2022, 13, 4579.
- 28L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Global Challenges 2018, 2, 1700079.
- 29Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 2021, 511, 115112.
- 30Z.-Y. Guo, Z.-Y. Ji, J. Wang, X.-F. Guo, J.-S. Liang, Desalination 2022, 533, 115767.
- 31J. Xiong, L. He, Z. Zhao, Desalination 2022, 535, 115822.
- 32J. Zhang, Y. Zhou, C. Hai, H. Su, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, T. Chen, J. Xiang, S. Huang, L. Ma, Sep. Purif. Technol. 2024, 334, 126010.
- 33L. A. Munk, S. A. Hynek, D. C. Bradley, D. Boutt, K. Labay, H. Jochens, P. L. Verplanck, M. W. Hitzman, in Rare Earth and Critical Elements in Ore Deposits, Vol. 18, Society of Economic Geologists, Littleton, CO 2016.
- 34C. Gong, F. Deng, C.-P. Tsui, Z. Xue, Y. S. Ye, C.-Y. Tang, X. Zhou, X. Xie, J. Mater. Chem. A 2014, 2, 19315.
- 35B. Li, R. Bi, M. Yang, W. Gao, J. Wang, Appl. Surf. Sci. 2022, 586, 152836.
- 36G.-L. Xu, Q. Liu, K. K. S. Lau, Y. Liu, X. Liu, H. Gao, X. Zhou, M. Zhuang, Y. Ren, J. Li, M. Shao, M. Ouyang, F. Pan, Z. Chen, K. Amine, G. Chen, Nat. Energy 2019, 4, 484.
- 37H. Yue, D. Wang, J. Zhu, L. Li, ACS Sustainable Chem. Eng. 2017, 5, 3019.
- 38D. Peng, J. Zhang, J. Zou, G. Ji, L. Ye, D. Li, B. Zhang, X. Ou, J. Cleaner Prod. 2021, 316, 128098.
- 39Z. Qin, Z. Wang, D. Li, B. Zhao, Y. Lv, K. Pan, Adv. Mater. Technol. 2023, 8, 2300739.
- 40W.-M. Chen, L. Qie, L.-X. Yuan, S.-A. Xia, X.-L. Hu, W.-X. Zhang, Y.-H. Huang, Electrochim. Acta 2011, 56, 2689.
- 41T. Han, S. Gao, Z. Wang, T. Fei, S. Liu, T. Zhang, J. Alloys Compd. 2019, 801, 142.
- 42H. Feng, Y. Li, J. Li, RSC Adv. 2012, 2, 6988.
- 43Y. Ma, S. Jiang, G. Jian, H. Tao, L. Yu, X. Wang, X. Wang, J. Zhu, Z. Hu, Y. Chen, Energy Environ. Sci. 2009, 2, 224.
- 44S.-H. Moon, J.-H. Shin, J.-H. Kim, J.-S. Jang, S.-B. Kim, Y.-Y. Park, S.-N. Lee, K.-W. Park, Mater. Chem. Phys. 2022, 287, 126267.
- 45T. Schiros, D. Nordlund, L. Pálová, D. Prezzi, L. Zhao, K. S. Kim, U. Wurstbauer, C. Gutiérrez, D. Delongchamp, C. Jaye, D. Fischer, H. Ogasawara, L. G. M. Pettersson, D. R. Reichman, P. Kim, M. S. Hybertsen, A. N. Pasupathy, Nano Lett. 2012, 12, 4025.
- 46J. Cao, Y. Wang, J. Chen, X. Li, F. C. Walsh, J.-H. Ouyang, D. Jia, Y. Zhou, J. Mater. Chem. A 2015, 3, 14445.
- 47Z. Yang, Y. Zhang, S. Gao, L. Zhao, T. Fei, S. Liu, T. Zhang, Sens. Actuators, B 2021, 346, 130518.
- 48X. Wang, Z. Feng, X. Hou, L. Liu, M. He, X. He, J. Huang, Z. Wen, Chem. Eng. J. 2020, 379, 122371.
- 49S. Li, L. Zhang, L. Zhang, J. Zhang, H. Zhou, X. Chen, T. Tang, New J. Chem. 2021, 45, 1092.
- 50Y. Shi, F. Li, Y. Zhang, L. He, Q. Ai, W. Luo, Nanomaterials 2019, 9, 560.
- 51X. Gu, Y. Yang, Y. Hu, M. Hu, J. Huang, C. Wang, J. Mater. Chem. A 2015, 3, 5866.
- 52Q. Xiao, Y. Li, Y.-h. Zhang, S. Huang, Energy Technol. 2023, 11, 2300361.
- 53B. Wang, W. Al Abdulla, D. Wang, X. S. Zhao, Energy Environ. Sci. 2015, 8, 869.
- 54J. Sun, X. Li, Y. Huang, G. Luo, D. Tao, J. Yu, L. Chen, Y. Chao, W. Zhu, Chem. Eng. J. 2023, 453, 139485.
- 55J. Lin, C. Zeng, X. Lin, C. Xu, X. Xu, Y. Luo, ACS Nano 2021, 15, 4594.
- 56S. Pérez-Rodríguez, S. D. S. Fitch, P. N. Bartlett, N. Garcia-Araez, ChemSusChem 2022, 15, 202102182.
- 57L. Wang, F. Zhou, Y. S. Meng, G. Ceder, Phys. Rev. B 2007, 76, 165435.
- 58G. Zeng, R. Caputo, D. Carriazo, L.-Q. Luo, M. Niederberger, Chem. Mater. 2013, 25, 3399.
- 59C. Ban, W.-J. Yin, H. Tang, S.-H. Wei, Y. Yan, A. C. Dillon, Adv. Energy Mater. 2012, 2, 1028.