Optimizing Integrated-Loss Capacities via Asymmetric Electronic Environments for Highly Efficient Electromagnetic Wave Absorption
Corresponding Author
Panbo Liu
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShuyun Zheng
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
Search for more papers by this authorZizhuang He
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
Search for more papers by this authorChang Qu
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
Search for more papers by this authorLeqian Zhang
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
Search for more papers by this authorCorresponding Author
Bo Ouyang
MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFan Wu
School of Science, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Jie Kong
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Panbo Liu
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShuyun Zheng
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
Search for more papers by this authorZizhuang He
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
Search for more papers by this authorChang Qu
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
Search for more papers by this authorLeqian Zhang
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
Search for more papers by this authorCorresponding Author
Bo Ouyang
MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFan Wu
School of Science, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Jie Kong
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Asymmetric electronic environments based on microscopic-scale perspective have injected infinite vitality in understanding the intrinsic mechanism of polarization loss for electromagnetic (EM) wave absorption, but still exists a significant challenge. Herein, Zn single-atoms (SAs), structural defects, and Co nanoclusters are simultaneously implanted into bimetallic metal-organic framework derivatives via the two-step dual coordination-pyrolysis process. Theoretical simulations and experimental results reveal that the electronic coupling interactions between Zn SAs and structural defects delocalize the symmetric electronic environments and generate additional dipole polarization without sacrificing conduction loss owing to the compensation of carbon nanotubes. Moreover, Co nanoclusters with large nanocurvatures induce a strong interfacial electric field, activate the superiority of heterointerfaces and promote interfacial polarization. Benefiting from the aforementioned merits, the resultant derivatives deliver an optimal reflection loss of −58.9 dB and the effective absorption bandwidth is 5.2 GHz. These findings provide an innovative insight into clarifying the microscopic loss mechanism from the asymmetric electron environments viewpoint and inspire the generalized electronic modulation engineering in optimizing EM wave absorption.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403903-sup-0001-SuppMat.docx3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zhong, M. K. He, C. Y. Zhang, Y. Q. Guo, J. W. Hu, J. W. Gu, Adv. Funct. Mater. 2024, 34, 2313544.
- 2P. B. Liu, Y. R. Li, H. X. Xu, L. Z. Shi, J. Kong, X. W. Lv, J. C. Zhang, R. C. Che, ACS Nano 2024, 18, 560.
- 3B. Cai, L. Zhou, P. Y. Zhao, H. L. Peng, Z. L. Hou, P. F. Hu, L. M. Liu, G. S. Wang, Nat. Commun. 2024, 15, 3299.
- 4P. B. Liu, S. Gao, X. D. Liu, Y. Huang, W. J. He, Y. T. Li, Compos. Part B 2020, 192, 107992.
- 5H. S. Liang, G. Chen, D. Liu, Z. J. Li, S. C. Hui, J. J. Yun, L. M. Zhang, H. J. Wu, Adv. Funct. Mater. 2023, 33, 2212604.
- 6Y. X. Li, X. Y. Chen, Q. Wei, W. W. Liu, Y. H. Zhang, G. W. Qin, Z. Shi, X. F. Zhang, Sci. Bull. 2020, 65, 623.
- 7Y. F. Zhao, X. F. Lu, G. L. Fan, D. Y. Luan, X. J. Gu, X. W. Lou, Angew. Chem., Int. Ed. 2022, 134, e202212542.
10.1002/ange.202212542 Google Scholar
- 8Y. X. Li, S. Y. Wang, X. S. Wang, Y. He, Q. Wang, Y. B. Li, M. L. Li, G. L. Yang, J. D. Yi, H. W. Lin, D. K. Huang, L. Li, H. Chen, J. H. Ye, J. Am. Chem. Soc. 2020, 142, 19259.
- 9T. Gao, Z. Zhu, Y. Li, H. Hu, H. Rong, W. Liu, T. Yang, X. Zhang, Carbon 2021, 177, 44.
- 10J. Leverett, R. Daiyan, L. L. Gong, K. Iputera, Z. Z. Tong, J. T. Qu, Z. P. Ma, Q. R. Zhang, S. Cheong, J. Cairney, R. S. Liu, X. Y. Lu, Z. H. Xia, L. M. Dai, R. Amal, ACS Nano 2021, 15, 12006.
- 11Z. M. Li, Y. Yan, M. J. Liu, Z. H. Qu, Y. C. Yue, T. Mao, S. Zhao, M. K. Liu, Z. Q. Lin, Proc. Natl. Acad. Sci. 2023, 120, e2218261120.
- 12W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith, C. Zhao, Angew. Chem., Int. Ed. 2019, 58, 6972.
- 13C. Liu, T. Li, X. C. Dai, J. Zhao, D. C. He, G. M. Li, B. Wang, X. J. Cui, J. Am. Chem. Soc. 2022, 144, 4913.
- 14A. Morankar, S. Deshpande, Z. H. Zeng, J. Greeley, Proc. Natl. Acad. Sci. 2023, 120, e2308458120.
- 15H. Liu, L. Z. Jiang, Y. Y. Sun, J. Khan, B. Feng, J. M. Xiao, H. D. Zhang, H. J. Xie, L. N. Li, S. Y. Wang, L. Han, Adv. Energy Mater. 2023, 13, 2301223.
- 16H. Xu, S. B. Zhang, X. Y. Zhang, M. Xu, M. M. Han, L. R. Zheng, Y. X. Zhang, G. Z. Wang, H. M. Zhang, H. J. Zhao, Angew. Chem., Int. Ed. 2023, 26, e202314414.
- 17E. Jung, H. Shin, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, A. W. Hooch, S. Park, K. S. Lee, S. P. Cho, J. S. Yoo, Y. E. Sung, T. Hyeon, Nat. Mater. 2020, 19, 436.
- 18T. Gao, R. Z. Zhao, Y. X. Li, Z. Y. Zhu, C. L. Hu, L. Z. Ji, J. Zhang, X. F. Zhang, Adv. Funct. Mater. 2022, 32, 2204370.
- 19X. Zhang, Y. Shi, J. Xu, Q. Ouyang, X. Zhang, C. L. Zhu, X. Zhang, Y. J. Chen, Nano-Micro Lett. 2022, 14, 27.
- 20Z. M. Tang, L. Xu, C. Xie, L. R. Guo, L. B. Zhang, S. H. Guo, J. H. Peng, Nat. Commun. 2023, 14, 5951.
- 21M. S. Cao, C. Han, X. X. Wang, M. Zhang, Y. L. Zhang, J. C. Shu, H. J. Yang, X. Y. Fang, J. Yuan, J. Mater. Chem. C 2018, 6, 4586.
- 22X. S. Hu, X. Y. Liu, X. Hu, C. Y. Zhao, Q. X. Guan, W. Li, Adv. Funct. Mater. 2023, 33, 2214215.
- 23X. Q. Wang, Z. Chen, X. Y. Zhao, T. Yao, W. X. Chen, R. You, C. M. Zhao, G. Wu, J. Wang, W. X. Huang, J. L. Yang, X. Hong, S. Q. Wei, Y. Wu, Y. D. Li, Angew. Chem., Int. Ed. 2018, 57, 1944.
- 24L. Shi, X. Lin, F. Liu, Y. Long, R. Cheng, C. Tan, L. Yang, C. Hu, S. Zhao, D. Liu, ACS Catal. 2022, 12, 5397.
- 25F. Li, G. F. Han, Y. Bu, S. Chen, I. Ahmad, H. Y. Jeong, Z. Fu, Y. Lu, J. B. Baek, Nano Energy 2022, 93, 106819.
- 26Y. Liu, F. Yang, Y. Zhang, J. P. Xiao, L. Yu, Q. F. Liu, Y. X. Ning, Z. W. Zhou, H. Chen, W. G. Huang, P. Liu, X. H. Bao, Nat. Commun. 2017, 8, 14459.
- 27Z. X. Song, L. Zhang, K. Doyle-Davis, X. Z. Fu, J. L. Luo, X. L. Sun, Adv. Energy Mater. 2020, 10, 2001561.
- 28L. L. Han, S. J. Song, M. J. Liu, S. Y. Yao, Z. X. Liang, H. Cheng, Z. H. Ren, W. Liu, R. Q. Lin, G. C. Qi, X. J. Liu, Q. Wu, J. Luo, H. L. Xin, J. Am. Chem. Soc. 2020, 142, 12563.
- 29C. Xie, L. F. Lin, L. Huang, Z. X. Wang, Z. W. Jiang, Z. H. Zhang, B. X. Han, Nat. Commun. 2021, 12, 4823.
- 30Z. Yu, R. Zhou, M. Ma, R. Zhu, P. Miao, P. Liu, J. Kong, J. Mater, Sci. Technol. 2022, 114, 206.
- 31L. Liu, Z. Z. Du, J. M. Sun, S. He, K. Wang, M. J. Li, L. H. Xie, W. Ai, Small 2023, 19, 2300556.
- 32Q. Cao, L. L. Zhang, C. Zhou, J. H. He, A. Marcomini, J. M. Lu, Appl. Catal. B 2021, 294, 120238.
- 33P. B. Liu, S. Gao, Y. Wang, F. T. Zhou, Y. Huang, J. H. Luo, Compos. Part B 2020, 202, 108406.
- 34M. S. Cao, X. X. Wang, W. Q. Cao, X. Y. Fang, B. Wen, J. Yuan, Small 2018, 14, 1800987.
- 35B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, J. Yuan, Carbon 2013, 65, 124.
- 36X. X. Wang, J. C. Shu, W. Q. Cao, M. Zhang, J. Yuan, M. S. Cao, Chem. Eng. J. 2019, 369, 1068.
- 37J. C. Shu, M. S. Cao, M. Zhang, X. X. Wang, W. Q. Cao, X. Y. Fang, M. Q. Cao, Adv. Funct. Mater. 2020, 30, 1908299.
- 38Z. Z. He, H. X. Xu, L. Z. Shi, X. R. Ren, J. Kong, P. B. Liu, Small 2024, 20, 2306253.
- 39S. Y. Tian, Z. H. Sun, H. Ding, Z. H. Guo, P. Wang, Y. Qiu, B. L. Du, J. Y. Bi, G. S. Li, L. Qian, Adv. Funct. Mater. 2024, 34, 2310475.
- 40M. F. Ying, R. Z. Zhao, X. Hu, Z. H. Zhang, W. W. Liu, J. Y. Yu, X. L. Liu, X. G. Liu, H. W. Rong, C. Wu, Y. X. Li, X. F. Zhang, Angew. Chem., Int. Ed. 2022, 61, e202201323.
- 41J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang, X. Zhang, C. Zhu, Y. Chen, Appl. Phys. Rev. 2022, 9, 011402.
- 42P. Q. Yin, T. Yao, Y. Wu, L. R. Zheng, Y. Lin, W. Liu, H. X. Ju, J. F. Zhu, X. Hong, Z. X. Deng, G. Zhou, S. Q. Wei, Y. D. Li, Angew. Chem., Int. Ed. 2016, 55, 10800.
- 43C. W. Shi, Y. H. Liu, R. Y. Qi, J. T. Li, J. X. Zhu, R. H. Yu, S. D. Li, X. F. Hong, J. S. Wu, S. B. Xi, L. Zhou, L. Q. Mai, Nano Energy 2021, 87, 106153.
- 44B. Q. Wang, M. Wang, Z. T. Fan, C. Ma, S. B. Xi, L. Y. Chang, M. S. Zhang, N. Ling, Z. Y. Mi, S. H. Chen, W. R. Leow, J. Zhang, D. S. Wang, Y. W. Lum, Nat. Commun. 2024, 15, 1719.
- 45M. K. He, J. W. Hu, H. Yan, X. Zhong, Y. L. Zhang, P. B. Liu, J. Kong, J. W. Gu, Adv. Funct. Mater. 2024, 34, 2316691.
- 46B. Han, W. Chu, X. J. Han, P. Xu, D. W. Liu, L. Cui, Y. Wang, H. Zhao, Y. C. Du, Carbon 2020, 168, 404.
- 47J. Wang, L. Ma, X. Y. Wang, X. H. Wang, J. J. Yao, Q. H. Yi, R. J. Tang, G. F. Zou, Angew. Chem., Int. Ed. 2021, 60, 25020.
- 48M. X. Sun, D. R. Wang, Z. M. Xiong, Z. W. Zhang, L. Qin, C. C. Chen, F. Wu, P. B. Liu, J. Mater. Sci. Technol. 2022, 130, 176.