Redox Promoted Rapid and Deep Reconstruction of Defect-Rich Nickel Precatalysts for Efficient Water Oxidation
Renzheng Jiang
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
Search for more papers by this authorJinfeng Zhang
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
Search for more papers by this authorJiajian Gao
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833 Republic of Singapore
Search for more papers by this authorCorresponding Author
Yingpeng Xie
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLiyun Wu
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
Search for more papers by this authorYi Wang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorZichen Xu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Zhong-Shuai Wu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShisheng Yuan
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
Search for more papers by this authorCorresponding Author
Guangwen Xu
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorRenzheng Jiang
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
Search for more papers by this authorJinfeng Zhang
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
Search for more papers by this authorJiajian Gao
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833 Republic of Singapore
Search for more papers by this authorCorresponding Author
Yingpeng Xie
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLiyun Wu
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
Search for more papers by this authorYi Wang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorZichen Xu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Zhong-Shuai Wu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShisheng Yuan
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
Search for more papers by this authorCorresponding Author
Guangwen Xu
Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Understanding the reconstruction mechanism to rationally design cost-effective electrocatalysts for oxygen evolution reaction (OER) is still challenging. Herein, a defect-rich NiMoO4 precatalyst is used to explore its OER activity and reconstruction mechanism. In situ generated oxygen vacancies, distorted lattices, and edge dislocations expedite the deep reconstruction of NiMoO4 to form polycrystalline Ni (oxy)hydroxides for alkaline oxygen evolution. It only needs ≈230 and ≈285 mV to reach 10 and 100 mA cm−2, respectively. The reconstruction boosted by the redox of Ni is confirmed experimentally by sectionalized cyclic voltammetry activations at different specified potential ranges combined with ex situ characterization techniques. Subsequently, the reconstruction route is presented based on the acid-base electronic theory. Accordingly, the dominant contribution of the adsorbate evolution mechanism to reconstruction during oxygen evolution is revealed. This work develops a novel route to synthesize defect-rich materials and provides new tactics to investigate the reconstruction.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202401384-sup-0001-SuppMat.docx28.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
- 2J. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430.
- 3L. Gao, X. Cui, C. D. Sewell, J. Li, Z. Lin, Chem. Soc. Rev. 2021, 50, 8428.
- 4Q. R. Shi, C. Z. Zhu, D. Du, Y. H. Lin, Chem. Soc. Rev. 2019, 48, 3181.
- 5E. L. Fernández, J. G. Rostra, J. P. Espinós, A. R. G. Elipe, A. D. L. Consuegra, F. Yubero, ACS Catal. 2020, 10, 6159.
- 6A. C. Garcia, T. Touzalin, C. Nieuwland, N. Perini, M. T. M. Koper, Angew. Chem., Int. Ed. 2019, 58, 12999.
- 7X. Y. Yu, Y. Feng, B. Guan, X. W. Lou, U. Paik, Energy Environ Sci. 2016, 9, 1246.
- 8S. L. Li, Z. C. Li, R. G. Ma, C. L. Gao, L. L. Liu, L. Hu, J. J. Zhu, T. M. Sun, Y. F. Tang, D. M. Liu, J. C. Wang, Angew. Chem., Int. Ed. 2021, 60, 3773.
- 9W. J. Zhou, X. J. Wu, X. H. Cao, X. Huang, C. L. Tan, J. Tian, H. Liu, J. Y. Wang, H. Zhang, Energy Environ Sci. 2013, 6, 2921.
- 10K. Xu, P. Z. Chen, X. L. Li, Y. Tong, H. Ding, X. Wu, W. S. Chu, Z. M. Peng, C. Z. Wu, Y. Xie, J. Am. Chem. Soc. 2015, 137, 4119.
- 11Z. K. Kou, X. Li, L. Zhang, W. J. Zang, X. R. Gao, J. H. Wang, Small Sci. 2021, 1, 2100011.
- 12Y. Wang, Y. L. Zhu, S. L. Zhao, S. X. She, F. F. Zhang, Y. Chen, T. Williams, T. Gengenbach, L. H. Zu, H. Y. Mao, W. Zhou, Z. P. Shao, H. T. Wang, J. Tang, D. Y. Zhao, C. Selomulya, Matter 2020, 3, 2124.
- 13X. Liu, J. S. Meng, K. Ni, R. T. Guo, F. J. Xia, J. J. Xie, X. Li, B. J. Wen, P. J. Wu, M. Li, J. S. Wu, X. J. Wu, L. Q. Mai, D. Y. Zhao, Cell Rep. Phys. Sci. 2020, 1, 100241.
- 14A. Sivanantham, P. Ganesan, A. Vinu, S. Shanmugam, ACS Catal. 2020, 10, 463.
- 15J. A. Rodriguez, S. Chaturvedi, J. C. Hanson, A. Albornoz, J. L. Brito, J. Phys. Chem. B 1998, 102, 1347.
- 16J. A. Rodriguez, J. C. Hanson, S. Chaturvedi, A. Maiti, J. L. Brito, J. Chem. Phys. 2000, 112, 935.
- 17X. Liu, R. Guo, K. Ni, F. Xia, C. Niu, B. Wen, J. Meng, P. Wu, J. Wu, X. Wu, L. Mai, Adv. Mater. 2020, 32, 2001136.
- 18S. Ratha, A. K. Samantara, K. K. Singha, A. S. Gangan, B. Chakraborty, B. K. Jena, C. S. Rout, ACS Appl. Mater. Interfaces 2017, 9, 9640.
- 19H. Sun, X. Xu, Y. Song, W. Zhou, Z. Shao, Adv. Funct. Mater. 2021, 31, 2009779.
- 20Z. H. Xiao, Y. Wang, Y. C. Huang, Z. X. Wei, C. L. Dong, J. M. Ma, S. H. Shen, Y. F. Li, S. Y. Wang, Energy Environ. Sci. 2017, 10, 2563.
- 21S. J. Peng, F. Gong, L. L. Li, D. S. Yu, D. X. Ji, T. Zhang, Z. Hu, Z. Q. Zhang, S. L. Chou, Y. H. Du, S. Ramakrishna, J. Am. Chem. Soc. 2018, 140, 13644.
- 22K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy 2020, 73, 104761.
- 23Q. He, Y. Y. Wan, H. L. Jiang, Z. W. Pan, C. Q. Wu, M. Wang, X. J. Wu, B. J. Ye, P. M. Ajayan, L. Song, ACS Energy Lett. 2018, 3, 1373.
- 24E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B. J. Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, K. E. Ayers, T. J. Schmidt, Nat. Mater. 2017, 16, 925.
- 25Z. H. Xiao, Y. C. Huang, C. L. Dong, C. Xie, Z. J. Liu, S. Q. Du, W. Chen, D. F. Yan, L. Tao, Z. Shu, G. H. Zhang, H. G. Duan, Y. Y. Wang, Y. Q. Zou, R. Chen, S. X. Wang, J. Am. Chem. Soc. 2020, 142, 12087.
- 26J. Bao, X. D. Zhang, B. Fan, J. J. Zhang, M. Zhou, W. L. Yang, X. Hu, H. Wang, B. C. Pan, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 7399.
- 27X. Liu, J. Meng, J. Zhu, M. Huang, B. Wen, R. Guo, L. Mai, Adv. Mater. 2021, 33, 2007344.
- 28R. Jiang, D. Zhao, H. Fan, Y. Xie, M. Li, H. Lin, Z. S. Wu, J. Colloid Interf. Sci. 2022, 606, 384.
- 29K. Eda, Y. Kato, Y. Ohshiro, T. Sugitani, M. S. Whittingham, J. Solid State Chem. 2010, 183, 1334.
- 30D. Levin, J. Y. Ying, J. Electroceram. 1999, 3, 25.
- 31J. Zou, G. L. Schrader, J. Catal. 1996, 161, 667.
- 32M. Rubinsteina, R. H. Kodamab, S. A. Makhlouf, J. Magn. Magn. Mater. 2001, 234, 289.
- 33Z. Wang, J. Chen, E. Song, N. Wang, J. Dong, X. Zhang, P. M. Ajayan, W. Yao, C. Wang, J. Liu, J. Shen, M. Ye, Nat. Commun. 2021, 12, 5960.
- 34C. Ye, J. Liu, Q. Zhang, X. Jin, Y. Zhao, Z. Pan, G. Chen, Y. Qiu, D. Ye, L. Gu, G. I. N. Waterhouse, L. Guo, S. Yang, J. Am. Chem. Soc. 2021, 143, 14169.
- 35J. Choi, D. Kim, W. R. Zheng, B. Y. Yan, Y. Li, L. Y. S. Lee, Y. Piao, Appl. Catal. B. Environ. 2021, 286, 119857.
- 36Y. Zhang, H. Guo, J. Ren, X. Li, W. Ren, R. Song, Appl. Catal. B. Environ. 2021, 298, 120582.
- 37T. Zhang, M. Y. Wu, D. Y. Yan, J. Mao, H. Liu, W. B. Hu, X. W. Du, T. Ling, S. Z. Qiao, Nano Energy 2018, 43, 103.
- 38P. R. Norton, R. L. Tapping, J. W. Goodle, Surf. Sci. 1977, 65, 13.
- 39M. W. Robert, R. S. C. Smart, J. Chem. Soc. Faraday Trans. 1984, 1, 2957.
10.1039/f19848002957 Google Scholar
- 40Z. Qiu, Y. Ma, K. Edström, G. A. Niklasson, T. Edvinsson, Int. J. Hydrog. Energy 2017, 42, 28397.
- 41D. S. Kim, K. Segawa, T. Soeya, I. E. Wachs, J. Catal. 1992, 136, 539.
- 42R. N. Dürr, P. Maltoni, H. N. Tian, B. Jousselme, L. Hammarström, T. Edvinsson, ACS Nano 2021, 15, 13504.
- 43A. Aracena, A. Sanino, O. Jerez, Trans. Nonferrous Met. Soc. China 2018, 28, 177.
- 44Y. Duan, Z. Y. Yu, S. J. Hu, X. S. Zheng, C. T. Zhang, H. H. Ding, B. C. Hu, Q. Q. Fu, Z. L. Yu, X. Zheng, J. F. Zhu, M. R. Gao, S. H. Yu, Angew. Chem., Int. Ed. 2019, 58, 15772.
- 45Y. Duan, J. Y. Lee, S. Xi, Y. Sun, J. Ge, S. J. H. Ong, Y. Chen, S. Dou, F. Meng, C. Diao, A. C. Fisher, X. Wang, G. G. Scherer, A. Grimaud, Z. J. Xu, Angew. Chem., Int. Ed. 2021, 60, 7418.
- 46P. W. Menezes, S. L. Yao, R. B. Suito, J. N. Hausmann, P. V. Menezes, M. Driess, Angew. Chem., Int. Ed. 2021, 60, 4640.
- 47M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 2002, 4, 822.
- 48Y. S. Jin, H. T. Wang, J. Li, X. Yue, Y. J. Han, P. K. Shen, Y. Cui, Adv. Mater. 2016, 28, 3785.
- 49A. Grimaud, O. D. Morales, B. Han, W. T. Hong, Y. L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, Y. S. Horn, Nat. Chem. 2017, 9, 457.
- 50T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque, R. Kötz, T. J. Schmidt, Sci. Rep. 2015, 5, 12167.
- 51J. S. Yoo, X. Rong, Y. S. Liu, A. M. Kolpak, ACS Catal. 2018, 8, 4628.
- 52J. J. Song, C. Wei, Z. F. Huang, C. T. Liu, L. Zeng, X. Wang, Z. C. J. Xu, Chem. Soc. Rev. 2020, 49, 2196.