Synchronous Regulation Strategy of Pyrrolidinium Thiocyanate Enables Efficient Perovskite Solar Cells and Self-Powered Photodetectors
Corresponding Author
Cong Chen
Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078 China
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZuolin Zhang
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorChen Wang
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorTaoran Geng
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorYinsu Feng
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorJike Ding
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorQuanxing Ma
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorWenhuan Gao
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorMengjia Li
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorCorresponding Author
Jiangzhao Chen
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jian-xin Tang
Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078 China
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Cong Chen
Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078 China
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZuolin Zhang
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorChen Wang
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorTaoran Geng
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorYinsu Feng
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorJike Ding
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorQuanxing Ma
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorWenhuan Gao
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorMengjia Li
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401 China
Search for more papers by this authorCorresponding Author
Jiangzhao Chen
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jian-xin Tang
Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078 China
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Developing inventive approaches to control crystallization and suppress trap defects in perovskite films is crucial for achieving efficient perovskite photovoltaics. Here, a synchronous regulation strategy is developed that involves the infusion of a zwitterionic ionic liquid additive, pyrrolidinium thiocyanate (PySCN), into the perovskite precursor to optimize the subsequent crystallization and defects. PySCN modification not only orchestrates the crystallization process but also deftly addresses trap defects in perovskite films. Within this, SCN− compensates for positively charged defects, while Py+ plays the role of passivating negatively charged defects. Based on the vacuum flash evaporation without anti-solvent, the air-processed perovskite solar cells (PSCs) with PySCN modification can achieve an extraordinary champion efficiency of 22.46% (0.1 cm2) and 21.15% (1.0 cm2) with exceptional stability surpassing 1200 h. Further, the self-powered photodetector goes above and beyond, showcasing an ultra-low dark current of 2.13 × 10−10 A·cm−2, a specific detection rate of 6.12 × 1013 Jones, and an expansive linear dynamic range reaching an astonishing 122.49 dB. PySCN modification not only signifies high efficiency but also ushers in a new era for crystallization regulation, promising a transformative impact on the optoelectronic performance of perovskite-based devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202311377-sup-0001-SuppMat.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. You, H. Zeng, Y. Liu, B. Han, M. Li, L. Li, X. Zheng, R. Guo, L. Luo, Z. Li, C. Zhang, R. Liu, Y. Zhao, S. Zhang, Q. Peng, T. Wang, Q. Chen, F. T. Eickemeyer, B. Carlsen, S. M. Zakeeruddin, L. Mai, Y. Rong, M. Grätzel, X. Li, Science 2023, 379, 288.
- 2X. H. Ma, L. Q. Yang, K. X. Lei, S. J. Zheng, C. Chen, H. W. Song, Nano Energy 2020, 78, 105354.
- 3C. Chen, Y. Zhu, D. Gao, M. Li, Z. Zhang, H. Chen, Y. Feng, C. Wang, J. Sun, J. Chen, H. Tian, L. Ding, C. Chen, Small 2023, 19, 2303200.
- 4W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu, T. Li, S. Yuan, Z. Xu, X. Feng, J. Xu, M. D. McGehee, J. Xu, Science 2023, 379, 683.
- 5P. Liu, Y. Chen, H. Xiang, X. Yang, W. Wang, R. Ran, W. Zhou, Z. Shao, Small 2021, 17, 2102186.
- 6C. Chen, D. Liu, B. Zhang, W. Bi, H. Li, J. Jin, X. Chen, L. Xu, H. Song, Q. Dai, Adv. Energy Mater. 2018, 8, 201703659.
- 7C. Zhang, H. Li, C. Gong, Q. Zhuang, J. Chen, Z. Zang, Energy Environ. Sci. 2023, 16, 3825.
- 8C. Chen, S. Zheng, H. Song, Chem. Soc. Rev. 2021, 50, 7250.
- 9H. Zhang, X. Yu, M. Li, Z. Zhang, Z. Song, X. Zong, G. Duan, W. Zhang, C. Chen, W.-H. Zhang, Y. Liu, M. Liang, Angew. Chem., Int. Ed. 2023, 65, 202314270.
- 10 NREL, NREL efficiency chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: June 2023).
- 11C. Li, X. Wang, E. Bi, F. Jiang, S. M. Park, Y. Li, L. Chen, Z. Wang, L. Zeng, H. Chen, Y. Liu, C. R. Grice, A. Abudulimu, J. Chung, Y. Xian, T. Zhu, H. Lai, B. Chen, R. J. Ellingson, F. Fu, D. S. Ginger, Z. Song, E. H. Sargent, Y. Yan, Science 2023, 379, 690.
- 12S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, M. Yu, F. Yu, Y. Zhang, R. Wu, Z. Liu, Z. Ning, D. Neher, L. Han, Y. Lin, H. Tian, W. Chen, M. Stolterfoht, L. Zhang, W.-H. Zhu, Y. Wu, Science 2023, 380, 404.
- 13Y. Cui, S. Wang, L. Ding, F. Hao, Adv. Energy Sustainability Res. 2021, 2, 2000047.
- 14D. Gao, R. Li, X. Chen, C. Chen, C. Wang, B. Zhang, M. Li, X. Shang, X. Yu, S. Gong, T. Pauporté, H. Yang, L. Ding, J.-X. Tang, J. Chen, Adv. Mater. 2023, 35, 2301028.
- 15X. Zhao, Z. Zhang, Y. Zhu, F. Meng, M. Li, C. Wang, W. Gao, Y. Feng, R. Li, D. He, J. Chen, C. Chen, Nano Lett. 2023, 23, 11184.
- 16X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
- 17J. Chen, N. G. J. A. M. Park, Adv. Mater. 2019, 31, 1803019.
- 18J. Z. Chen, N. G. Park, ACS Energy Lett. 2020, 5, 2742.
- 19H. Zhang, L. Pfeifer, S. M. Zakeeruddin, J. Chu, M. Grätzel, Nat Rev Chem 2023, 7, 632.
- 20M. Li, H. Li, Q. Zhuang, D. He, B. Liu, C. Chen, B. Zhang, T. Pauporté, Z. Zang, J. Chen, Angew. Chem., Int. Ed. 2022, 61, 202206914.
- 21L. H. Zhu, X. Zhang, M. J. Li, X. N. Shang, K. X. Lei, B. X. Zhang, C. Chen, S. J. Zheng, H. W. Song, J. Z. Chen, Adv. Energy Mater. 2021, 11, 2100529.
- 22Q. Zhuang, H. Li, C. Zhang, C. Gong, H. Yang, J. Chen, Z. Zang, Adv. Mater. 2023, 35, 2303275.
- 23R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. Xiao, B. Chen, S. M. Park, G. Chen, H. R. Atapattu, K. R. Graham, J. Xu, J. Zhu, L. Li, C. Zhang, E. H. Sargent, H. Tan, Nature 2022, 603, 73.
- 24J. Chen, X. Zhao, S. G. Kim, N. G. Park, Adv. Mater. 2019, 31, 1902902.
- 25C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang, J. Chen, Z. Zang, Nano–Micro Lett. 2022, 15, 17.
- 26D. Gao, R. Li, X. Chen, C. Chen, C. Wang, B. Zhang, M. Li, X. Shang, X. Yu, S. Gong, T. Pauporté, H. Yang, L. Ding, J. Tang, J. Chen, Adv. Mater. 2023, 35, 2301028.
- 27D. Gao, M. Li, L. Yang, C. Wang, X. Shang, X. Ma, C. Wu, B. Zhang, H. Song, C. Chen, ACS Appl. Energy Mater. 2021, 4, 14662.
- 28J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, J. Liu, F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G. Teeter, D. Zhao, M. M. Al-Jassim, M. F. A. M. van Hest, M. C. Beard, S. E. Shaheen, J. J. Berry, Y. Yan, K. Zhu, Science 2019, 364, 475.
- 29N. D. Pham, C. Zhang, V. T. Tiong, S. Zhang, G. Will, A. Bou, J. Bisquert, P. E. Shaw, A. Du, G. J. Wilson, H. Wang, Adv. Funct. Mater. 2019, 29, 1806479.
- 30Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 31F. Meng, X. Shang, D. Gao, W. Zhang, C. Chen, Nanotechnology 2021, 33, 065201.
10.1088/1361-6528/ac33d5 Google Scholar
- 32C. Li, Z. Song, C. Chen, C. Xiao, B. Subedi, S. P. Harvey, N. Shrestha, K. K. Subedi, L. Chen, D. Liu, Y. Li, Y.-W. Kim, C.-S. Jiang, M. J. Heben, D. Zhao, R. J. Ellingson, N. J. Podraza, M. Al-Jassim, Y. Yan, Nat. Energy 2020, 5, 768.
- 33J. N. Li, X. H. Meng, Z. H. Wu, Y. Y. Duan, R. X. Guo, W. D. Xiao, Y. S. Zhang, Y. K. Li, Y. L. Shen, W. Zhang, G. S. Shao, Adv. Funct. Mater. 2022, 32, 2112991.
- 34A. F. Xu, R. T. Wang, L. W. Yang, V. Jarvis, J. F. Britten, G. Xu, Chem. Commun. 2019, 55, 3251.
- 35F. Xu, Y. J. Li, N. Liu, Y. Han, M. S. Zou, T. L. Song, Crystals 2021, 11, 11030241.
- 36J. Li, X. Meng, Z. Wu, Y. Duan, R. Guo, W. Xiao, Y. Zhang, Y. Li, Y. Shen, W. Zhang, G. Shao, Adv. Funct. Mater. 2022, 32, 2112991.
- 37J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, J. Y. Kim, Nature 2021, 592, 381.
- 38J. Z. Chen, N. G. Park, Small Methods 2021, 5, 2100311.
- 39J. Jeong, M. Kim, J. Seo, H. Z. Lu, P. Ahlawat, A. Mishra, Y. G. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim, Nature 2021, 592, 381.
- 40W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, H. J. Snaith, Nat. Commun. 2015, 6, 6142.
- 41L. Zhao, D. Luo, J. Wu, Q. Hu, W. Zhang, K. Chen, T. Liu, Y. Liu, Y. Zhang, F. Liu, T. P. Russell, H. J. Snaith, R. Zhu, Q. Gong, Adv. Funct. Mater. 2016, 26, 3508.
- 42H. Bi, B. B. Liu, D. M. He, L. Bai, W. Q. Wang, Z. G. Zang, J. Z. Chen, Chem. Eng. J. 2021, 418, 129375.
- 43D. He, T. Zhou, B. Liu, L. Bai, W. Wang, H. Yuan, C. Xu, Q. Song, D. Lee, Z. Zang, L. Ding, J. Chen, 2022, 4, 12158.
- 44J. Chen, S.-G. Kim, N.-G. Park, Adv. Mater. 2018, 30, 1801948.
- 45D. He, R. Li, B. Liu, Q. Zhou, H. Yang, X. Yu, S. Gong, X. Chen, B. Xu, S. Yang, J. Chen, J. Energy Chem. 2023, 80, 1.
- 46S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H. J. Snaith, Nature 2019, 571, 245.
- 47Q. Han, Y. Bai, J. Liu, K.-z. Du, T. Li, D. Ji, Y. Zhou, C. Cao, D. Shin, J. Ding, A. D. Franklin, J. T. Glass, J. Hu, M. J. Therien, J. Liu, D. B. Mitzi, Energy Environ. Sci. 2017, 10, 2365.
- 48X. Lian, J. Chen, Y. Zhang, M. Qin, J. Li, S. Tian, W. Yang, X. Lu, G. Wu, H. Chen, Adv. Funct. Mater. 2019, 29, 1807024.
- 49Z. Yunfei, Z. Zuolin, Z. Xuefan, L. Mengjia, F. Yinsu, S. Zhang, G. Wenhuan, C. Jiangzhao, T. Jian-Xin, C. Cong, Adv. Energy Mater. 2024, 2303946.
- 50S. Kubota, S. Ozaki, J. Onishi, K. Kano, O. Shirai, Anal. Sci. 2009, 25, 189.
- 51Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, F. Yan, Nat. Commun. 2016, 7, 11105.
- 52S. Nagane, U. Bansode, O. Game, S. Chhatre, S. Ogale, Chem. Commun. 2014, 50, 9741.
- 53C. H. Hendon, R. X. Yang, L. A. Burton, A. Walsh, J. Mater. Chem. A 2015, 3, 9067.
- 54C.-H. Liao, C.-H. Chen, J. Bing, C. Bailey, Y.-T. Lin, T. M. Pandit, L. Granados, J. Zheng, S. Tang, B.-H. Lin, H.-W. Yen, D. R. McCamey, B. J. Kennedy, C.-C. Chueh, A. W. Y. Ho-Baillie, Adv. Mater. 2022, 34, 2104782.
- 55L. Zhu, X. Zhang, M. Li, X. Shang, K. Lei, B. Zhang, C. Chen, S. Zheng, H. Song, J. Chen, Adv. Energy Mater. 2021, 11, 2100529.
- 56X. Ma, L. Yang, X. Shang, M. Li, D. Gao, C. Wu, S. Zheng, B. Zhang, J. Chen, C. Chen, H. Song, Chem. Eng. J. 2021, 426, 130685.
- 57P. Chen, Y. Bai, S. Wang, M. Lyu, J.-H. Yun, L. Wang, Adv. Funct. Mater. 2018, 28, 1706923.
- 58Y. Hou, K. Wang, D. Yang, Y. Jiang, N. Yennawar, K. Wang, M. Sanghadasa, C. Wu, S. Priya, ACS Energy Lett. 2019, 4, 2646.
- 59L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Adv. Energy Mater. 2020, 10, 2000197.
- 60B. Jiang, B. Zhang, Y. He, Q. Peng, Z. Jiao, L. Qiao, Corros. Sci. 2021, 191, 109734.
- 61M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. Von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y.-L. Loo, J. M. Luther, et al., Nat. Energy 2020, 5, 35.
- 62Z. Gao, Y. F. Zheng, G. C. Huang, G. J. Yang, X. G. Yu, J. S. Yu, Micromachines 2020, 11, 1090.
- 63C. Fuentes-Hernandez, W.-F. Chou, T. M. Khan, L. Diniz, J. Lukens, F. A. Larrain, V. A. Rodriguez-Toro, B. Kippelen, Science 2020, 370, 698.
- 64T. Klab, B. Luszczynska, J. Ulanski, Q. Wei, G. Chen, Y. Zou, Org. Electron. 2020, 77, 105527.
- 65Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei, Z. Li, J. Li, Y. Liu, J. Zhao, G. Fang, Nano–Micro Lett. 2022, 14, 215.
- 66H. Zhang, J. Q. Cheng, D. Li, F. Lin, M. Jian, C. J. Liang, A. K. Y. Jen, M. Gratzel, W. C. H. Choy, Adv. Mater. 2017, 29, 1604695.