Industrial Waste Derived Separators for Zn-Ion Batteries Achieve Homogeneous Zn(002) Deposition Through Low Chemical Affinity Effects
Chengwu Yang
Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330 Thailand
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P. R. China
Search for more papers by this authorPattaraporn Woottapanit
Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorYilei Yue
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P. R. China
Search for more papers by this authorSining Geng
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P. R. China
Search for more papers by this authorJin Cao
College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002 P. R. China
Search for more papers by this authorCorresponding Author
Xinyu Zhang
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guanjie He
Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ UK
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiaqian Qin
Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330 Thailand
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChengwu Yang
Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330 Thailand
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P. R. China
Search for more papers by this authorPattaraporn Woottapanit
Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorYilei Yue
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P. R. China
Search for more papers by this authorSining Geng
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P. R. China
Search for more papers by this authorJin Cao
College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002 P. R. China
Search for more papers by this authorCorresponding Author
Xinyu Zhang
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guanjie He
Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ UK
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiaqian Qin
Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330 Thailand
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Designing a cost-effective and multifunctional separator that ensures dendrite-free and stable Zn metal anode remains a significant challenge. Herein, a multifunctional cellulose-based separator is presented consisting of industrial waste-fly ash particles and cellulose nanofiber using a facile solution-coating method. The resulting fly ash-cellulose (FACNF) separators enable a high ion conductivity (5.76 mS cm−1) and low desolvation energy barrier of hydrated Zn2+. These features facilitate fast ion transfer kinetics and inhibit water-induced side reactions. Furthermore, experimental results and theoretical simulations confirm that the presence of fly ash particles in FACNF separators effectively accommodate the preferential deposition of Zn(002) planes, due to the weak chemical affinity between Zn(002) plane and fly ash, to mitigate dendrite formation and growth. Consequently, the utilization of FACNF separators causes an impressive cycling performance in both Zn||Zn symmetric cells (1600 h at 2 mA cm−2/1 mAh cm−2) and Zn||(NH4)2V10O25 (NVO) full cells (4000 cycles with the capacity retention of 92.1% at 5 A g−1). Furthermore, the assembled pouch cells can steadily support digital thermometer over two months without generating gas and volume expansion. This work provides new insights for achieving crystallographic uniformity in Zn anodes and realizing cost-effective and long-lasting aqueous zinc-ion batteries (AZIBs).
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202311203-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. M. Bates, Y. Preger, L. Torres-Castro, K. L. Harrison, S. J. Harris, J. Hewson, Joule 2022, 6, 742.
- 2M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
- 3A. Bayaguud, X. Luo, Y. Fu, C. Zhu, ACS Energy Lett. 2020, 5, 3012.
- 4L. Li, S. Jia, Z. Cheng, C. Zhang, ChemSusChem 2023, 16, 202202330.
- 5X. Zhang, Z. Li, L. Luo, Y. Fan, Z. Du, Energy 2022, 238, 121652.
- 6F. Niu, Y. Mao, N. Wang, Z. Feng, J. Chen, L. Ye, S. Zhang, Z. Bai, S. Dou, J. Colloid Interface Sci. 2024, 655, 760.
- 7D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li, Z. Huang, G. Liang, Q. Yang, C. Zhi, Adv. Energy Mater. 2022, 12, 2102707.
- 8J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun, B. Jia, S. Zhang, T. Ma, Nano-Micro Lett. 2022, 14, 42.
- 9M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan, Y. Chen, Angew. Chem., Int. Ed. 2023, 62, e202302701.
- 10G. Qian, G. Zan, J. Li, S.-J. Lee, Y. Wang, Y. Zhu, S. Gul, D. J. Vine, S. Lewis, W. Yun, Z.-F. Ma, P. Pianetta, J.-S. Lee, L. Li, Y. Liu, Adv. Energy Mater. 2022, 12, 2200255.
- 11T. Wang, C. Li, X. Xie, B. Lu, Z. He, S. Liang, J. Zhou, ACS Nano 2020, 14, 16321.
- 12C. Xi, Y. Xiao, C. Yang, M. Li, L. Li, Y. Chao, L. Li, C. He, Y. Yu, J. Mater. Chem. A 2023, 11, 6522.
- 13D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao, C. Liu, J.-W. Wang, H.-Z. Sun, J.-P. Zhang, X.-L. Wu, Angew. Chem., Int. Ed. 2023, 62, e202216934.
- 14C. Yang, P. Woottapanit, J. Cao, Y. Yue, D. Zhang, J. Yi, Z. Zeng, X. Zhang, J. Qin, Y. Wang, J. Mater. Chem. A 2023, 11, 24902.
- 15G. Wang, Q. Yao, J. Dong, W. Ge, N. Wang, Z. Bai, J. Yang, S. Dou, Adv. Energy Mater. 2023, 2303221.
10.1002/aenm.202303221 Google Scholar
- 16B.-S. Lee, S. Cui, X. Xing, H. Liu, X. Yue, V. Petrova, H.-D. Lim, R. Chen, P. Liu, ACS Appl. Mater. Interfaces 2018, 10, 38928.
- 17D. Zhang, J. Cao, R. Chanajaree, C. Yang, H. Chen, X. Zhang, J. Qin, ACS Appl. Mater. Interfaces 2023, 15, 11940.
- 18Y. Zhang, G. Yang, M. L. Lehmann, C. Wu, L. Zhao, T. Saito, Y. Liang, J. Nanda, Y. Yao, Nano Lett. 2021, 21, 10446.
- 19Y. Li, X. Peng, X. Li, H. Duan, S. Xie, L. Dong, F. Kang, Adv. Mater. 2023, 35, 2300019.
- 20J. Abdulla, J. Cao, P. Wangyao, J. Qin, J. Met. Mater. Miner. 2020, 30, 1.
- 21K. Lolupiman, P. Wangyao, J. Qin, J. Met. Mater. Miner. 2019, 29, 120.
- 22J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang, X. Zhang, J. Qin, Z.-S. Wu, Adv. Energy Mater. 2021, 11, 2101299.
- 23Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei, S. Li, W. Li, Z. Xue, X. Yang, J. Sun, Adv. Funct. Mater. 2022, 32, 2204306.
- 24J. Zhou, Z. Zhang, W. Jiang, S. Hou, K. Yang, Q. Li, L. Pan, J. Yang, J. Alloys Compd. 2023, 950, 169836.
- 25G. Guo, X. Tan, K. Wang, L. Zheng, H. Zhang, J. Power Sources 2023, 553, 232321.
- 26X. Zhang, J. Li, K. Qi, Y. Yang, D. Liu, T. Wang, S. Liang, B. Lu, Y. Zhu, J. Zhou, Adv. Mater. 2022, 34, 2205175.
- 27Y. Liu, S. Liu, X. Xie, Z. Li, P. Wang, B. Lu, S. Liang, Y. Tang, J. Zhou, InfoMat 2023, 5, e12374.
- 28Y. Zong, H. He, Y. Wang, M. Wu, X. Ren, Z. Bai, N. Wang, X. Ning, S. X. Dou, Adv. Energy Mater. 2023, 13, 2300403.
- 29L. Li, J. Peng, X. Jia, X. Zhu, B. Meng, K. Yang, D. Chu, N. Yang, J. Yu, Electrochim. Acta 2022, 430, 141129.
- 30Y. Li, Z. Wang, Y. Cai, M. E. Pam, Y. Yang, D. Zhang, Y. Wang, S. Huang, Energy Environ. Sci. 2022, 5, 823.
- 31Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu, M. Liu, J. Zhou, S. Liang, Adv. Funct. Mater. 2022, 32, 2109671.
- 32J. Zhang, S. Zhang, B. Liu, J. Clean. Prod. 2020, 250, 119507.
- 33Y. Zhang, L. Wang, L. Chen, B. Ma, Y. Zhang, W. Ni, D. C. W. Tsang, J. Hazard. Mater. 2021, 411, 125132.
- 34K. Yu, Y. Liu, M. Jia, C. Wang, Y. Yang, J. Energy Storage 2022, 51, 104388.
- 35Y. Li, L. Yang, X. Li, T. Miki, T. Nagasaka, J. Hazard. Mater. 2021, 411, 125044.
- 36M. Ahmaruzzaman, Prog. Energy Combust. 2010, 36, 327.
- 37Y. Soudais, L. Moga, J. Blazek, F. Lemort, J. Anal. Appl. Pyrol. 2007, 78, 46.
- 38L. Szczesniak, A. Rachocki, J. Tritt-Goc, Cellulose 2008, 15, 445.
- 39Q. Zong, B. Lv, C. Liu, Y. Yu, Q. Kang, D. Li, Z. Zhu, D. Tao, J. Zhang, J. Wang, Q. Zhang, G. Cao, ACS Energy Lett. 2023, 8, 2886.
- 40C. Yang, X. Zhang, J. Cao, D. Zhang, P. Kidkhunthod, S. Wannapaiboon, J. Qin, ACS Appl. Mater. Interfaces 2023, 15, 26718.
- 41J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, Z. Guo, Adv. Mater. 2020, 32, 2003021.
- 42Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang, L. Dai, P. Zhou, B. Lu, J. Zhou, Z. He, Nano-Micro Lett. 2022, 14, 218.
- 43Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 2019, 12, 1938.
- 44Z. Meng, Y. Jiao, P. Wu, Angew. Chem., Int. Ed. 2023, 62, e202307271.
- 45Y. Lin, Z. Mai, H. Liang, Y. Li, G. Yang, C. Wang, Energy Environ. Sci. 2023, 16, 687.
- 46R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao, L. Qie, Y. Huang, Nat. Commun. 2022, 13, 3252.
- 47P. He, J. Huang, Adv. Mater. 2022, 34, 2109872.
- 48H. Tian, J.-L. Yang, Y. Deng, W. Tang, R. Liu, C. Xu, P. Han, H. J. Fan, Adv. Energy Mater. 2023, 13, 2202603.
- 49B. Luo, Y. Wang, L. Sun, S. Zheng, G. Duan, Z. Bao, Z. Ye, J. Huang, J. Energy Chem. 2023, 77, 632.
- 50J. Zhu, Z. Bie, X. Cai, Z. Jiao, Z. Wang, J. Tao, W. Song, H. J. Fan, Adv. Mater. 2022, 34, 2207209.
- 51F. Wu, F. Du, P. Ruan, G. Cai, Y. Chen, X. Yin, L. Ma, R. Yin, W. Shi, W. Liu, J. Zhou, X. Cao, J. Mater. Chem. A 2023, 11, 11254.
- 52Y. Zhang, X. Li, L. Fan, Y. Shuai, N. Zhang, Cell Rep. Phys. Sci. 2022, 3, 100824.
- 53R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang, W. Zhou, B. Wang, Z. Yang, X. Wang, L. Wang, Z. Sun, F. Bu, Z. Zhao, W. Li, D. Zhao, D. Chao, Adv. Mater. 2023, 35, 2209288.
- 54R. Deng, Z. He, F. Chu, J. Lei, Y. Cheng, Y. Zhou, F. Wu, Nat. Commun. 2023, 14, 4981.
- 55X. Liu, Q. Lu, A. Yang, Y. Qian, Chin. Chem. Lett. 2023, 34, 107703.
- 56J.-L. Yang, L. Liu, Z. Yu, P. Chen, J. Li, P. A. Dananjaya, E. K. Koh, W. S. Lew, K. Liu, P. Yang, H. J. Fan, ACS Energy Lett. 2023, 8, 2042.
- 57X. Xu, M. Duan, Y. Yue, Q. Li, X. Zhang, L. Wu, P. Wu, B. Song, L. Mai, ACS Energy Lett. 2019, 4, 1328.
- 58Y. Lu, T. Zhu, W. Van Den Bergh, M. Stefik, K. Huang, Angew. Chem., Int. Ed. 2020, 59, 17004.
- 59L. Yao, C. Hou, M. Liu, H. Chen, Q. Zhao, Y. Zhao, Y. Wang, L. Liu, Z.-W. Yin, J. Qiu, S. Li, R. Qin, F. Pan, Adv. Funct. Mater. 2023, 33, 2209301.
- 60C. Li, Z. Sun, T. Yang, L. Yu, N. Wei, Z. Tian, J. Cai, J. Lv, Y. Shao, M. H. Rümmeli, J. Sun, Z. Liu, Adv. Mater. 2020, 32, 2003425.
- 61Z. Li, L. Ye, G. Zhou, W. Xu, K. Zhao, X. Zhang, S. Hong, T. Ma, M.-C. Li, C. Liu, C. Mei, Chem. Eng. J. 2023, 457, 141160.
- 62W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu, C.-P. Wong, Energy Storage Mater. 2022, 44, 57.
- 63F. Shen, H. Du, H. Qin, Z. Wei, W. Kuang, N. Hu, W. Lv, Z. Yi, D. Huang, Z. Chen, H. He, Small 2023, 20, 2305119.
10.1002/smll.202305119 Google Scholar