Engineering High-Performance Hypergolic Propellant by Synergistic Contribution of Metal–Organic Framework Shell and Aluminum Core
Chao Wang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physics-Chemistry Research Institute, Xi'an, 710061 China
Search for more papers by this authorCai Li
Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZheng Duan
Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZi-Fan Wang
Zhengzhou Foreign Language School New Fengyang Campus, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Qian-You Wang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physics-Chemistry Research Institute, Xi'an, 710061 China
E-mail: [email protected]
Search for more papers by this authorShuang-Quan Zang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorChao Wang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physics-Chemistry Research Institute, Xi'an, 710061 China
Search for more papers by this authorCai Li
Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZheng Duan
Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZi-Fan Wang
Zhengzhou Foreign Language School New Fengyang Campus, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Qian-You Wang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physics-Chemistry Research Institute, Xi'an, 710061 China
E-mail: [email protected]
Search for more papers by this authorShuang-Quan Zang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorAbstract
Hypergolicity is a highly desired characteristic for hybrid rocket engine-based fuels because it eliminates the need for a separate ignition system. Introducing hypergolic additives into conventional fuels through physical mixing is a feasible approach, but achieving highly reliable hypergolic ignition and energy release remains a major challenge. Here, the construction of core–shell Al@metal organic framework (MOF) heterostructures is reported as high-performance solid hypergolic propellants. Upon contact with the liquid oxidizer the uniformly distributed hypergolic MOF (Ag-MOF) shell can induce the ignition of hypergolic-inert fuel Al, resulting in Al combustion. Such a synthetic strategy is demonstrated to be favorable in hotspot generation and heat transfer relative to a simple physical mixture of Al/Ag-MOF, thus producing shorter ignition delay times and more efficient combustion. Thermal reactivity study indicated that the functionalization of the Ag-MOF shell changes the energy release process of the inner Al, which is accompanied by a thermite reaction. The synergistic effect of implantation of hypergolic MOF and high energy Al contributes to high specific impulses of 230–270 s over a wide range of oxidizer-to-fuel ratios.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202310970-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
smll202310970-sup-0002-VideoS1.mp42.1 MB | Supplemental Video 1 |
smll202310970-sup-0003-VideoS2.mp41.1 MB | Supplemental Video 2 |
smll202310970-sup-0004-VideoS3.mp42.7 MB | Supplemental Video 3 |
smll202310970-sup-0005-VideoS4.mp42.1 MB | Supplemental Video 4 |
smll202310970-sup-0006-VideoS5.mp43.5 MB | Supplemental Video 5 |
smll202310970-sup-0007-VideoS6.mp42.3 MB | Supplemental Video 6 |
smll202310970-sup-0008-VideoS7.mp44.7 MB | Supplemental Video 7 |
smll202310970-sup-0009-VideoS8.mp44.2 MB | Supplemental Video 8 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Stefan, H. Tom, A. Yonis, R. Michael, H. Leslie, M. Jeff, Angew. Chem., Int. Ed. 2011, 50, 5886; b) K. Wang, A. K. Chinnam, N. Petrutik, E. P. Komarala, Q. Zhang, Q.-L. Yan, R. Dobrovetsky, M. Gozin, J. Mater. Chem. A 2018, 6, 22819; c) Q. Zhang, J. M. Shreeve, Chem. Rev. 2014, 114, 10527; d) S. Pichon, C. Laurent, C. Nabiha, P. Claude, J. Propul. Power 2005, 21, 1057; e) H. M. Titi, M. Arhangelskis, G. P. Rachiero, T. Friscic, R. D. Rogers, Angew. Chem., Int. Ed. 2019, 58, 18399.
- 2a) N. A. Davydenko, R. G. Gollender, A. M. Gubertov, V. V. Mironov, N. N. Volkov, Aerosp. Sci. Technol. 2007, 11, 55; b) A. Mazzetti, L. Merotto, G. Pinarello, Acta Astronaut. 2016, 126, 286.
- 3a) B. Adrian-Nicolae, Incas Bulletin 2018, 10, 173;
10.13111/2066-8201.2018.10.2.16 Google Scholarb) D. Lee, C. Lee, J. Propul Power 2017, 33, 1581.
- 4a) P. George, S. Krishnan, P. M. Varkey, M. Ravindran, L. Ramachandran, J. Propul. Power 2001, 17, 35; b) M. Weismiller, T. Connell, G. Risha, R. Yetter, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit, Nashville, TN, July, 2010.
- 5a) S. C. Shark, T. L. Pourpoint, S. F. Son, S. D. Heister, J. Propul. Power 2013, 29, 1122; b) M. A. Pfeil, J. D. Dennis, S. F. Son, S. D. Heister, T. L. Pourpoint, P. V. Ramachandran, J. Propul. Power 2015, 31, 365.
- 6a) T. A. Vo, M. Jung, D. Adams, H. Shim, H. Kim, R. Hwang, M. Oh, Combust. Flame 2020, 213, 409;
b) Z. Zhang, Y. Shen, C.-A. Wang, Y. Wang, F. Li, J. Cheng, J. Xu, Y. Ye, R. Shen, Combust. Flame 2022, 240, 112024;
c) S. Zhang, B. Zhu, Y. Sun, Combust. Flame 2022, 240, 112027;
d) J. Wang, J. Chen, Y. Mao, Y. Deng, W. Cao, F. Nie, J. Wang, Def. Technol. 2023, https://doi.org/10.1016/j.dt.2023.07.016;
10.1016/j.dt.2023.07.016 Google Scholare) E. T. Jeans, B. J. Cantwell, G. S. Hubbard, Acta Astronaut. 2016, 128, 119; f) C.-Y. Li, M.-J. Li, H.-Y. Song, C.-H. Xu, L. Gao, B.-Y. Ye, J.-Y. Wang, C. W. An, Energ. Mater. Front. 2023, https://doi.org/10.1016/j.enmf.2023.10.004.10.1016/j.enmf.2023.10.004 Google Scholarg) K. Xue, H.-Y. Li, L. Pan, Y. Liu, X. Zhang, J.-J. Zou, Chem. Eng. J. 2022, 430, 132909.
- 7a) K. E. Uhlenhake, M. Gomez, D. N. Collard, M. Örnek, S. F. Son, Combust. Flame 2023, 254, 112848; b) E. Xiu-Tian-Feng, L. Pan, F. Wang, L. Wang, X. Zhang, J.-J. Zou, Ind. Eng. Chem. Res. 2016, 55, 2738.
- 8a) H. M. Titi, J. M. Marrett, G. Dayaker, M. Arhangelskis, C. Mottillo, A. J. Morris, G. P. Rachiero, T. Friscic, R. D. Rogers, Sci. Adv. 2019, 5, eaav9044; b) Y. Zhang, Y.-Y. Xing, C. Wang, R. Pang, W.-W. Ren, S. Wang, Z.-M. Li, L. Yang, W.-C. Tong, Q.-Y. Wang, S.-Q. Zang, ACS Appl. Mater. Interfaces 2022, 14, 23909. c) S. Qi, Z. Li, Z. Zhou, Y. Cui, G. Zhang, T. Zhang, J. Zhang, L. Yang, Chin. J. Chem. 2011, 29, 59.
- 9a) Z.-M. Li, Y.-Q. Xu, C. Wang, G.-R. Lei, R. Zhang, L. Zhang, J.-H. Chen, J.-G. Zhang, T.-L. Zhang, Q.-Y. Wang, J. Mater. Chem. A 2022, 10, 2795; b) H. M. Titi, M. Arhangelskis, A. D. Katsenis, C. Mottillo, G. Ayoub, J.-L. Do, A. M. Fidelli, R. D. Rogers, T. Friščić, Chem. Mater. 2019, 31, 4882; c) J.-H. Qin, Z. Xiao, P. Xu, Z.-H. Li, X. Lu, X.-G. Yang, W. Lu, L.-F. Ma, D.-S. Li, Inorg. Chem. 2022, 61, 13234; d) C. Ma, L. Zheng, G. Wang, J. Guo, L. Li, Q. He, Y. Chen, H. Zhang, Aggregate 2022, 3, e145; e) H.-M. Guo, X. Y. Dong, S. Wang, Q.-Y. Wang, S.-Q. Zang, Chin. Chem. Lett. 2023, 14, 108537.
- 10O. Jobin, C. Mottillo, H. M. Titi, J. M. Marrett, M. Arhangelskis, R. D. Rogers, B. Elzein, T. Friščić, É. Robert, Chem. Sci. 2022, 13, 3424.
- 11a) W. He, P. J. Liu, G. Q. He, M. Gozin, Q. L. Yan, Adv. Mater. 2018, 30, 1706293; b) X. Ma, Y. Li, I. Hussain, R. Shen, G. Yang, K. Zhang, Adv. Mater. 2020, 32, 2001291.
- 12C. Wang, Y. J. Wang, C. L. He, Q. Y. Wang, S. Q. Zang, JACS Au 2021, 1, 2202.
- 13a) H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426; b) S. Hong, Y. S. Na, S. Choi, I. T. Song, W. Y. Kim, H. Lee, Adv. Funct. Mater. 2012, 22, 4711; c) S. Xuan, Y.-X. J. Wang, J. C. Yu, K. Cham-Fai Leung, Chem. Mater. 2009, 21, 5079.
- 14a) F. Bernsmann, V. Ball, F. Addiego, A. Ponche, M. Michel, J. J. d. A. Gracio, V. Toniazzo, D. Ruch, Langmuir 2011, 27, 2819; b) W. He, W. Ao, G. Yang, Z. Yang, Z. Guo, P.-J. Liu, Q.-L. Yan, Chem. Eng. J. 2020, 381, 122623.
- 15Q. Y. Wang, J. Wang, S. Wang, Z. Y. Wang, M. Cao, Z. C. L. He, J. Q. Yang, S. Q. Zang, T. C. W. Mak, J. Am. Chem. Soc. 2020, 142, 12010.
- 16R.-L. Wang, D.-P. Li, L.-J. Wang, X. Zhang, Z.-Y. Zhou, J.-L. Mu, Z.-M. Su, Dalton Trans. 2019, 48, 1051.
- 17a) M. Peng, Y. Zhao, J. Lan, Y. Qiao, Y. Tan, J. Energy Chem. 2021, 58, 345; b) Z. Yu, J. Chen, J. Cheng, Y. Geng, S. Zhu, Y. Ding, J. Yang, Tribol. Int. 2022, 176, 107901.
- 18a) R. Russell, S. Bless, M. Pantoya, J. Energ. Mater. 2011, 29, 175; b) K. T. Sullivan, C. Wu, N. W. Piekiel, K. Gaskell, M. R. Zachariah, Combust. Flame 2013, 160, 438; c) J. Shen, Z. Qiao, K. Zhang, J. Wang, R. Li, H. Xu, G. Yang, F. Nie, Appl. Therm. Eng. 2014, 62, 732.
- 19W.-L. Yuan, L. Zhang, G.-H. Tao, S.-L. Wang, Y. Wang, Q.-H. Zhu, G.-H. Zhang, Z. Zhang, Y. Xue, S. Qin, L. He, J. M. Shreeve, Sci. Adv. 2020, 6, eabb1899.
- 20a) C. Sun, S. Tang, X. Zhang, Energy Fuels 2017, 31, 10055; b) U. C. Durgapal, V. K. Venugopal, AIAA J. 1974, 12, 1611.
- 21K. Wang, T. Liu, Y. Jin, S. Huang, P. Natan, D. Shem-Tov, Q.-L. Yan, G. Michael, Q. Zhang, J. Mater. Chem. A 2020, 8, 14661.
- 22V. K. Bhosale, P. S. Kulkarni, Propellants, Explos., Pyrotech. 2016, 41, 1013.