Ultrahigh Degree of Cationic Disorder, Configurational Entropy in New Type of High-Entropy Pseudobrookite Phase
Jinyu Wu
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJinFeng Zhang
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorXiaoxia Hu
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorHaijiao Xie
Hangzhou Yanqu, Information Technology Co., Ltd., Zhejiang, 310003 China
Search for more papers by this authorLiwen Yan
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorFeng Hou
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJiachen Liu
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Xiaohui Ma
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
E-mail: ; [email protected]
Search for more papers by this authorCorresponding Author
Anran Guo
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
E-mail: ; [email protected]
Search for more papers by this authorJinyu Wu
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJinFeng Zhang
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorXiaoxia Hu
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorHaijiao Xie
Hangzhou Yanqu, Information Technology Co., Ltd., Zhejiang, 310003 China
Search for more papers by this authorLiwen Yan
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorFeng Hou
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJiachen Liu
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Xiaohui Ma
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
E-mail: ; [email protected]
Search for more papers by this authorCorresponding Author
Anran Guo
School of Materials Science and Engineering, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072 China
E-mail: ; [email protected]
Search for more papers by this authorAbstract
High-entropy ceramics exhibit various excellent properties owing to their high configurational entropy, which is caused by multi-principal elements sharing one lattice site. The configurational entropy will further increase significantly if multi-principal elements randomly share two different lattice sites. For this purpose, pseudobrookite phase containing two cationic lattice sites (A and B sites) is selected, and corresponding high-entropy pseudobrookite (M2+0.4M3+1.2)Ti1.4O5 is synthesized. Herein, the distribution of the 2-valent and 3-valent cations in the A and B sites are analysed in depth. The distance between the A and B sites in the crystal structure models which are constructed by the Rietveld analysis is calculated and defined as distance d. Meanwhile, the atomic column positions in the STEM images are quantified by a model-based mathematical algorithm, and the corresponding distance d are calculated. By comparing the distance d, it is determine that the 2-valent and 3-valent cations are jointly and disorderly distributed in the A and B sites in high-entropy (M2+0.4M3+1.2)Ti1.4O5. The density functional theory (DFT) simulations also demonstrate that this type of crystal structure is more thermodynamically stable. The higher degree of cationic disorder leads to a higher configurational entropy in high-entropy (M2+0.4M3+1.2)Ti1.4O5, and endows high-entropy (M2+0.4M3+1.2)Ti1.4O5 with very low thermal conductivity (1.187−1.249 W m−1 K−1).
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202310615-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) W. M. Zhang, B. Zhao, H. M. Xiang, F. Z. Dai, S. J. Wu, Y. C. Zhou, J. Adv. Ceram. 2021, 10, 62; b) T. Z. Tu, J. X. Liu, Y. Wu, L. Zhou, Y. C. Liang, G. J. Zhang, J. Adv. Ceram. 2023, 12, 861; c) S. C. Jiang, T. Hu, J. Gild, N. X. Zhou, J. Y. Nie, M. D. Qin, T. Harrington, K. Vecchio, J. Luo, Scripta Mater 2018, 142, 116; d) F. Strauss, J. Lin, M. Duffiet, K. Wang, T. Zinkevich, A. L. Hansen, S. Indris, T. Brezesinski, ACS Mater. Lett. 2022, 4, 418; e) C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J. P. Maria, Nat. Commun. 2015, 6, 8485; f) C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. 2020, 5, 295; g) H. M. Xiang, Y. Xing, F. Z. Dai, H. J. Wang, L. Su, L. Miao, G. J. Zhang, Y. G. Wang, X. W. Qi, L. Yao, H. L. Wang, B. Zhao, J. Q. Li, Y. C. Zhou, J. Adv. Ceram. 2021, 10, 385; h) A. J. Wright, J. Luo, J. Mater. Sci. 2020, 55, 9812; i) L. Backmana, J. Gild, J. Luo, E. J. Opila, Acta Mater. 2020, 197, 81; j) X. T. Xin, W. C. Bao, X. G. Wang, X. J. Guo, Y. Lu, C. X. Zhu, J. X. Liu, Q. Li, F. F. Xu, G. J. Zhang, J. Adv. Ceram. 2023, 12, 916.
- 2a) B. L. Ye, T. Q. Wen, M. C. Nguyen, L. Y. Hao, C. Z. Wang, Y. H. Chu, Acta Mater. 2019, 170, 15; b) T. Q. Wen, H. H. Liu, B. L. Ye, D. Liu, Y. H. Chu, Sci. China Mater. 2019, 63, 300.
- 3a) Y. Suzuki, Y. Shinoda, Sci. Technol. Adv. Mater. 2011, 12, 034301; b) K. Kornaus, P. Rutkowski, R. Lach, A. Gubernat, J. Eur. Ceram. Soc. 2021, 41, 1498; c) S. Cerro, C. Gargori, M. Llusar, G. Monrós, Ceram. Int. 2018, 44, 13349.
- 4Y. Nakagoshi, Y. Suzuki, J. Asian Ceram. Soc. 2015, 3, 334.
- 5a) M. Regue, I. Y. Ahmet, P. S. Bassi, A. L. Johnson, S. Fiechter, R. V. D. Krol, F. F. Abdi, S. Eslava, ACS Appl. Energ. Mater. 2020, 3, 12066; b) K. Xiong, K. Z. Wang, L. Chen, X. Q. Wang, Q. B. Fan, J. Courtois, Y. L. Liu, X. G. Tuo, M. H. Yan, Nano-Micro. Lett. 2018, 10, 17; c) M. A. Ehsan, R. Naeem, V. McKee, A. S. Hakeem, M. Mazhar, Sol. Energ. Mat. Sol. C. 2017, 161, 328; d) C. Chen, F. Giovannelli, J. R. Duclère, F. Delorme, J. Eur. Ceram. Soc. 2017, 37, 4681; e) Z. Z. Djuric, O. S. Aleksic, M. V. Nikolic, N. Labus, M. Radovanovic, M. D. Lukovic, Ceram. Int. 2014, 40, 15131; f) M. V. Nikolic, Z. Z. Vasiljevic, M. D. Lukovic, V. P. Pavlovic, J. Vujancevic, M. Radovanovic, J. B. Krstic, B. Vlahovic, V. B. Pavlovic, Sensor. Actuat. B-Chem. 2018, 277, 654; g) M. Llusar, E. García, M. T. García, C. Gargori, J. A. Badenes, G. Monrós, J. Eur. Ceram. Soc. 2015, 35, 357.
- 6a) D. M. Xirouchakis, Lithos 2007, 95, 1; b) H. X. Yang, R. M. Hazen, J. Solid State Chem. 1998, 138, 238; c) D. Xirouchakis, A. Smirnov, K. Woody, D. H. Lindsley, D. J. Andersen, Am. Mineral. 2002, 87, 658.
- 7a) M. Dondi, T. S. Lyubenova, J. B. Carda, M. Ocaña, J. Am. Ceram. Soc. 2009, 92, 1972; b) K. Kornaus, R. Lach, M. Szumera, K. Świerczek, A. Gubernat, J. Eur. Ceram. Soc. 2019, 39, 2535; c) T. Jantzen, K. Hack, E. Yazhenskikh, M. Müller, Calphad 2018, 62, 187; d) A. L. Jaromin, D. D. Edwards, J. Am. Ceram. Soc. 2005, 88, 2573.
- 8J. Y. Wu, X. H. Ma, X. X. Hu, L. W. Yan, F. Hou, J. C. Liu, A. R. Guo, J. Adv. Ceram. 2022, 11, 1654.
- 9a) G. Kresse, J. Furthmüller, Comp. Mater. Sci. 1996, 6, 15; b) G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 10J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 11J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982.
- 12G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 13a) A. Azarniya, M. Zekavat, M. Soltaninejad, F. Bakhshandeh, H. R. M. Hosseini, S. Kashani, C. Amutha, S. K. Sadrnezhaad, S. Ramakrishna, Adv. Powder Technol. 2020, 31, 3328; b) C. C. Ma, X. Yao, L. Wang, Z. H. Cai, H. Huang, X. Gao, R. R. Chen, Y. Liu, P. W. Huo, Y. S. Yan, J. Environ. Chem. Eng. 2018, 6, 686.
- 14a) J. T. Kloprogge, B. J. Wood, J. Mater. Sci. 2016, 51, 5436; b) J. L. Bourque, M. C. Biesinger, K. M. Baines, Dalton T 2016, 45, 7678.
- 15a) N. S. McIntyre, D. G. Zetaruk, Anal. Chem. 1977, 49, 1521; b) Q. Gao, X. M. Wu, Y. M. Fan, Q. L. Meng, Dyes Pigments 2017, 146, 537; c) V. Mahdikhah, A. Ataie, A. Babaei, S. Sheibani, C. W. Ow-Yang, S. K. Abkenar, J. Phys. Chem. Solids 2019, 134, 286; d) D. Wilson, M. A. Langell, Appl. Surf. Sci 2014, 303, 6; e) B. H. Ding, H. Y. Li, R. N. Wang, B. H. Dong, L. X. Cao, Catal. Sci. Technol. 2022, 12, 6120.
- 16a) J. G. Kim, D. L. Pugmire, D. Battaglia, M. A. Langell, Appl. Surf. Sci. 2000, 165, 70; b) H. W. Nesbitt, D. Legrand, G. M. Bancroft, Phys. Chem. Miner. 2000, 27, 357; c) K. Sakamoto, F. Hayashi, K. Sato, M. Hirano, N. Ohtsu, Appl. Surf. Sci. 2020, 526, 146729.
- 17N. Agmon, J. Am. Chem. Soc. 2017, 139, 15068.
- 18F. Matteucci, G. Cruciani, M. Dondi, G. Gasparotto, D. M. Tobaldi, J. Solid State Chem. 2007, 180, 3196.
- 19A. D. Backer, K. H. W. Bos, W. Van den Broek, J. Sijbers, S. Van Aert, Ultramicroscopy 2016, 171, 104.
- 20M. J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 1998, 74, 131.
- 21H. Wu, Q. Lu, Y. J. Li, J. J. Wang, Y. B. Li, R. Jiang, J. F. Zhang, X. R. Zheng, X. P. Han, N. Q. Zhao, J. J. Li, Y. D. Deng, W. B. Hu, Nano Lett. 2022, 22, 6492.
- 22a) Q. Q. Ding, Y. Zhang, X. Chen, X. Q. Fu, D. K. Chen, S. J. Chen, L. Gu, F. Wei, H. B. Bei, Y. F. Gao, M. R. Wen, J. X. Li, Z. Zhang, T. Zhu, R. O. Ritchie, Q. Yu, Nature 2019, 574, 223; b) J. Ding, Q. Yu, M. Asta, R. O. Ritchie, Proc. Natl Acad. Sci 2018, 115, 8919; c) L. Su, H. X. Huyan, A. Sarkar, W. P. Gao, X. X. Yan, C. Addiego, R. Kruk, H. Hahn, X. Q. Pan, Nat. Commun. 2022, 13, 2358.
- 23a) A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, N. S. McIntyre, Surf. Interface Anal. 2004, 36, 1564; b) R. P. Gupta, S. K. Sen, Phys. Rev. B 1974, 10, 71; c) R. P. Gupta, S. K. Sen, Phys. Rev. B 1975, 12, 15.
- 24C. Tantardini, A. R. Oganov, Nat. Commun. 2021, 12, 2087.
- 25Y. C. Wang, T. Csanádi, H. F. Zhang, J. Dusza, M. J. Reece, Acta Mater. 2022, 231, 117887.
- 26S. Y. Liu, S. X. Zhang, S. Y. Liu, D. J. Li, Y. P. Li, S. W. Wang, J. Eur Ceram. Soc. 2021, 41, 6267.
- 27L. Rogal, P. Bobrowski, F. Körmann, S. Divinski, F. Stein, B. Grabowski, Sci. Rep. 2017, 7, 2209.
- 28C. G. Liu, Q. Peng, T. Shi, F. Gao, Y. H. Li, Scripta Mater 2022, 220, 114898.
- 29a) Z. Q. Sun, Y. C. Zhou, J. Y. Wang, M. S. Li, J. Am. Ceram. Soc. 2008, 91, 2623; b) X. Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 2004, 24, 1; c) M. Zhao, X. R. Ren, J. Yang, W. Pan, Ceram. Int. 2016, 42, 501; d) Z. F. Zhao, H. M. Xiang, F. Z. Dai, Z. J. Peng, Y. C. Zhou, J. Mater. Sci. Technol. 2019, 35, 2647; e) J. T. Zhu, X. Y. Meng, P. Zhang, Z. L. Li, J. Xu, M. J. Reece, F. Gao, J. Eur. Ceram. Soc. 2021, 41, 2861; f) Z. F. Zhao, H. Chen, H. M. Xiang, F. Z. Dai, X. H. Wang, W. Xu, K. Sun, Z. J. Peng, Y. C. Zhou, J. Mater. Sci. Technol. 2020, 47, 45; g) L. S. Xia, S. Dong, J. Q. Xin, K. X. Gui, P. T. Hu, Y. S. Xie, D. D. Yang, X. H. Zhang, Y. C. Zhou, J. Adv. Ceram. 2023, 12, 1258; h) H. Chen, Z. F. Zhao, H. M. Xiang, F. Z. Dai, W. Xu, K. Sun, J. C. Liu, Y. C. Zhou, J. Mater. Sci. Technol. 2020, 48, 57; i) M. D. Qin, Q. Z. Yan, Y. Liu, J. Luo, J. Adv. Ceram. 2021, 10, 166; j) Y. Zhang, S. K. Sun, W. M. Guo, L. Xu, W. Zhang, H. T. Lin, J. Adv. Ceram. 2021, 10, 173; k) M. C. Wang, X. Dong, Q. J. Zhou, Z. J. Feng, Y. L. Liao, X. M. Zhou, M. R. Du, Y. Q. Gu, J. Eur. Ceram. Soc. 2019, 39, 1703.