Tumor-Targeting Multiple Metabolic Regulations for Bursting Antitumor Efficacy of Chemodynamic Therapy
Corresponding Author
Fan Gao
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
E-Mail: [email protected]
Search for more papers by this authorJian-Hui Dong
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
Search for more papers by this authorChun Xue
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
Search for more papers by this authorXin-Xin Lu
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
Search for more papers by this authorYu Cai
Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014 P. R. China
Search for more papers by this authorZi-Yang Tang
Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Clinical College of Nanjing Medical University, Nanjing, 210008 P. R. China
Search for more papers by this authorChang-Jin Ou
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
Search for more papers by this authorCorresponding Author
Fan Gao
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
E-Mail: [email protected]
Search for more papers by this authorJian-Hui Dong
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
Search for more papers by this authorChun Xue
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
Search for more papers by this authorXin-Xin Lu
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
Search for more papers by this authorYu Cai
Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014 P. R. China
Search for more papers by this authorZi-Yang Tang
Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Clinical College of Nanjing Medical University, Nanjing, 210008 P. R. China
Search for more papers by this authorChang-Jin Ou
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044 P. R. China
Search for more papers by this authorAbstract
Interfering with intratumoral metabolic processes is proven to effectively sensitize different antitumor treatments. Here, a tumor-targeting catalytic nanoplatform (CQ@MIL-GOX@PB) loading with autophagy inhibitor (chloroquine, CQ) and glucose oxidase (GOX) is fabricated to interfere with the metabolisms of tumor cells and tumor-associated macrophages (TAMs), then realizing effective antitumor chemodynamic therapy (CDT). Once accumulating in the tumor site with the navigation of external biotin, CQ@MIL-GOX@PB will release Fe ions and CQ in the acid lysosomes of tumor cells, the latter can sensitize Fe ions-involved antitumor CDT by blocking the autophagy-dependent cell repair. Meanwhile, the GOX component will consume glucose, which not only generates many H2O2 for CDT but also once again decelerates the tumor repair process by reducing energy metabolism. What is more, the release of CQ can also drive the NO anabolism of TAMs to further sensitize CDT. This strategy of multiple metabolic regulations is evidenced to significantly improve the antitumor effect of traditional CDT nanoagents and might provide a new sight to overcome the bottlenecks of different antitumor treatments.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202310248-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Yu, X. Li, G. Cheng, X. Zhang, D. Wu, J. Chang, S. Wang, Chin. Chem. Lett. 2021, 32, 2127.
- 2L. Zhang, C. X. Li, S. S. Wan, X. Z. Zhang, Adv. Healthcare Mater. 2022, 11, 2101971.
- 3C. Jia, Y. Guo, F. G. Wu, Small 2022, 18, 2103868.
- 4R. Liang, Y. Li, M. Huo, H. Lin, Y. Chen, ACS Appl. Mater. Interfaces 2019, 11, 42917.
- 5H. Zhu, S. Huang, M. Ding, Z. Li, J. Li, S. Wang, D. T. Leong, ACS Appl. Mater. Interfaces 2022, 14, 25183.
- 6X. Chen, H. Zhang, M. Zhang, P. Zhao, R. Song, T. Gong, Y. Liu, X. He, K. Zhao, W. Bu, Adv. Funct. Mater. 2020, 30, 1908365.
- 7X. Zhang, C. He, Y. Chen, C. Chen, R. Yan, T. Fan, Y. Gai, T. Yang, Y. Lu, G. Xiang, Biomaterials 2021, 275, 120987.
- 8Z. Wang, H. Li, W. She, X. Zhang, Y. Liu, Y. Liu, P. Jiang, Anal. Chem. 2023, 95, 1710.
- 9R. J. Kishton, J. C. Rathmell, Cancer J. 2015, 21, 62.
- 10Z. Shen, Q. Ma, X. Zhou, G. Zhang, G. Hao, Y. Sun, J. Cao, NPG Asia Mater 2021, 13, 39.
- 11J. Z. Ma, P. T. Ding, X. Y. Zhao, Y. F. Chen, M. R. Ma, H. Liu, H. C. Xie, T. Z. Yang, Z. N. Liu, X. G. Yang, Mater. Des. 2022, 221, 110897.
- 12J. Q. Huang, L. P. Zhao, X. Zhou, L. S. Liu, R. R. Zheng, F. A. Deng, Y. B. Liu, X. Y. Yu, S. Y. Li, H. Cheng, Small 2022, 18, 2107467.
- 13P. Yuan, F. A. Deng, Y. B. Liu, R. R. Zheng, X. N. Rao, X. Z. Qiu, D. W. Zhang, X. Y. Yu, H. Cheng, S. Y. Li, Adv. Healthcare Mater. 2021, 10, 2100198.
- 14X. Cheng, H. D. Xu, H. H. Ran, G. Liang, F. G. Wu, ACS Nano 2021, 15, 8039.
- 15Z. Ma, M. Yang, M. F. Foda, K. Zhang, S. Li, H. Liang, Y. Zhao, H. Han, ACS Nano 2022, 16, 17389.
- 16D. Wen, T. Liang, G. Chen, H. Li, Z. Wang, J. Wang, R. Fu, X. Han, T. Ci, Y. Zhang, P. Abdou, R. Li, L. Bu, G. Dotti, Z. Gu, Adv. Sci. 2023, 10, 2206001.
- 17F. Gao, J. Dong, C. Xue, L. An, T. Zhang, W. J. Wang, C. Ou, X. Dong, Nano Today 2023, 50, 101831.
- 18A. V. Snezhkina, A. V. Kudryavtseva, O. L. Kardymon, M. V. Savvateeva, N. V. Melnikova, G. S. Krasnov, A. A. Dmitriev, Oxid. Med. Cell. Longev. 2019, 17, 6175804.
- 19H. Wu, F. Wu, T. Zhou, Z. Hu, W. Wang, X. Liang, J. Wang, C. You, B. Sun, F. Lin, Chem. Eng. J. 2022, 431, 133470.
- 20M. Maan, J. M. Peters, M. Dutta, A. D. Patterson, Biochem. Biophys. Res. Commun. 2018, 504, 582.
- 21J. Schöneberg, M. R. Pavlin, S. Yan, M. Righini, I. H. lee, L. A. Carlsom, A. H. Bahrami, D. H. Goldman, X. Ren, G. Hummer, C. Bustamante, J. H. Hurley, Science 2018, 362, 1423.
- 22J. M. Stark, P. Hu, A. J. Pierce, M. E. Moynahan, N. Ellis, M. Jasin, J. Biol. Chem. 2002, 277, 20185.
- 23X. G. Wang, Q. Cheng, Y. Yu, X. Z. Zhang, Angew. Chem., Int. Ed. 2018, 57, 7836.
- 24M. J. Li, F. Gao, Q. X. Huang, J. Feng, C. J. Liu, S. L. Gong, X. Z. Zhang, Sci. China Mater. 2023, 66, 1215.
- 25G. P. P. Kuntz, T. A. Glassman, C. Cooper, T. J. Swift, Biochemistry 1972, 11, 538.
- 26T. Dudev, C. Grauffel, C. Lim, Sci. Rep. 2017, 7, 42377.
- 27Y. Sheng, Y. Yuan, C. Liu, X. Tao, X. Shan, F. Xu, J. Mater. Sci. Mater. Med. 2009, 20, 1881.
- 28S. Vinogradov, G. Warren, X. Wei, Nanomedicine 2014, 9, 695.
- 29J. Liu, R. Kang, D. Tang, Cancer Gene Ther. 2021, 28, 1.
- 30A. Horn, J. K. Jaiswal, Cell. Mol. Life Sci. 2018, 75, 3751.
- 31N. W. Andrews, M. Corrotte, Curr. Biol. 2018, 28, R392.
- 32W. Fan, B. C. Yung, X. Chen, Angew. Chem., Int. Ed. 2018, 57, 8383.
- 33Y. Hu, T. Lv, Y. Ma, J. Xu, Y. Zhang, Y. Hou, Z. Huang, Y. Ding, Nano Lett. 2019, 19, 2731.
- 34K. Y. Lee, Med. Biol. Sci. Eng. 2019, 2, 1.
- 35M. Rath, I. Müller, P. Kropf, E. I. Closs, M. Munder, Front. Immunol. 2014, 5, 532.
- 36M. Z. Zou, W. L. Liu, F. Gao, X. F. Bai, H. S. Chen, X. Zeng, X. Z. Zhang, Adv. Mater. 2019, 31, 1904495.
- 37Y. Li, R. Jia, H. Lin, X. Sun, F. Qu, Adv. Funct. Mater. 2021, 31, 2008420.
- 38S. Gao, X. Lu, P. Zhu, H. Lin, L. Yu, H. Yao, C. Wei, Y. Chen, J. Shi, J. Mater. Chem. B 2019, 7, 3599.
- 39D. Jana, Y. Zhao, Exploration 2022, 2, 20210238.
- 40Z. Yuan, C. Lin, Y. He, B. Tao, M. Chen, J. Zhang, P. Liu, K. Cai, ACS Nano 2020, 14, 3546.
- 41D. Chen, J. Xie, R. Fiskesund, W. Dong, X. Liang, J. Lv, X. Jin, J. Liu, S. Mo, T. Zhang, F. Cheng, Y. Zhou, H. Zhang, K. Tang, J. Ma, Y. Liu, B. Huang, Nat. Commun. 2018, 9, 873.
- 42Z. Duan, Y. Luo, Signal Transduct. Target. Ther. 2021, 6, 127.
- 43Y. Xia, L. Rao, H. Yao, Z. Wang, P. Ning, X. Chen, Adv. Mater. 2020, 32, 2002054.
- 44L. Zhang, S. S. Wan, C. X. Li, L. Xu, H. Chen, X. Z. Zhang, Nano Lett. 2018, 18, 7609.