Triple Synergism Effect of Ammonium Nitrilotriacetate on the Chemical Mechanical Polishing Performance of Ruthenium Barrier Layers
Ziwei He
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
Search for more papers by this authorCorresponding Author
Jianwei Zhou
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yuhang Qi
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChong Luo
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
Search for more papers by this authorChenwei Wang
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
Search for more papers by this authorJianghao Liu
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
Search for more papers by this authorZiwei He
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
Search for more papers by this authorCorresponding Author
Jianwei Zhou
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yuhang Qi
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChong Luo
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
Search for more papers by this authorChenwei Wang
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
Search for more papers by this authorJianghao Liu
School of Electronic Information Engineering, Hebei University of Technology, Tianjin, 300130 P. R. China
Search for more papers by this authorAbstract
As the feature size of integrated circuits continues to decrease, ruthenium (Ru) has been suggested as the successor to traditional Ta/TaN bilayers for barrier layer materials due to its unique properties. This research delves into the effects of ammonium nitrilotriacetate (NTA(NH4)3) on the chemical mechanical polishing (CMP) performance of Ru in H2O2-based slurry. The removal rate (RR) of Ru surged from 47 to 890 Å min−1, marking an increase of about 17 times. The essence of this mechanism lies in the triple synergistic effects of NTA(NH4)3 in promoting ruthenium (Ru) removal: 1) The interaction between from NTA(NH4)3 and SiO2 abrasives; 2) The chelating action of [(NH4)N(CH2COO)3]2- from NTA(NH4)3 on Ru and its oxides; 3) The ammoniation and chelation of Ru and its oxides by from NTA(NH4)3, which enhance the dissolution and corrosion of oxidized Ru, making its removal during the barrier layer CMP process more efficient through mechanical means. This research introduces a synergistic approach for the effective removal of Ru, shedding light on potential applications of CMP in the field of the integrated circuits.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202309965-sup-0001-SuppMat.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Y. Liu, Z. Qiu, X. Ji, A. Lukashchuk, J. He, J. Riemensberger, M. Hafermann, R. N. Wang, J. Liu, C. Ronning, T. J. Kippenberg, Science 2022, 376, 1309; b) K. Myny, Nat. Electron. 2018, 1, 30; c) N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, A. E. Vladar, Nat. Electron. 2018, 1, 532; d) Z. Zheng, L. Zhang, W. Song, S. Feng, H. Xu, J. Sun, S. Yang, T. Chen, J. Wei, K. J. Chen, Nat. Electron. 2021, 4, 595; e) K. Zhu, C. Wen, A. A. Aljarb, F. Xue, X. Xu, V. Tung, X. Zhang, H. N. Alshareef, M. Lanza, Nat. Electron. 2021, 4, 775.
- 2a) M. Darmi, L. Cherif, J. Benallal, R. Elgouri, N. Hmina, Electronics 2017, 6, 78; b) J.-C. Tsao, C.-P. Liu, Y.-L. Wang, Y.-S. Wang, K.-W. Chen, J. Phys. Chem. Solids 2008, 69, 501; c) Q. Xie, X.-P. Qu, J.-J. Tan, Y.-L. Jiang, M. Zhou, T. Chen, G.-P. Ru, Appl. Surf. Sci. 2006, 253, 1666; d) T. A. Chen, C. P. Chuu, C. C. Tseng, C. K. Wen, H. S. P. Wong, S. Y. Pan, R. T. Li, T. A. Chao, W. C. Chueh, Y. F. Zhang, Q. Fu, B. I. Yakobson, W. H. Chang, L. J. Li, Nature 2020, 579, 219.
- 3S. K. Natarajan, C.-L. Nies, M. Nolan, J. Mater. Chem. C 2019, 7, 7959.
- 4a) R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, T. Q. Hurd, Electrochem. Solid-State Lett. 2004, 7, G154;
b) B. C. Peethala, D. Roy, S. V. Babu, Electrochem. Solid-State Lett. 2011, 14, H306;
c) Z. Wang, J. Zhou, C. Wang, J. Zhang, Q. Wang, R. Wang, ECS J. Solid State Sci. Technol. 2019, 8, P285;
d) R. Bernasconi, L. Magagnin, J. Electrochem. Soc. 2018, 166, D3219;
e) D. Lee, H. Lee, H. Jeong, Int. J. Precis. Eng. Manuf. 2016, 17, 1751;
f) H. P. Amanapu, K. V. Sagi, L. G. Teugels, S. V. Babu, ECS J. Solid State Sci. Technol. 2013, 2, P445;
g) J.-K. Kim, T.-H. Cheon, S.-H. Kim, Y.-B. Park, Jpn. J. Appl. Phys. 2012, 51, 05EB04.
10.1143/JJAP.51.05EB04 Google Scholar
- 5a) J. Cheng, T. Wang, L. Jiang, X. Lu, Appl. Surf. Sci. 2015, 351, 401; b) Y.-S. Chou, S.-C. Yen, K.-T. Jeng, Mater. Chem. Phys. 2015, 162, 477.
- 6a) K. V. Sagi, H. P. Amanapu, S. R. Alety, S. V. Babu, ECS J. Solid State Sci. Technol. 2016, 5, P256; b) K. Yadav, M. Ramachandran, S. N. Victoria, Proc. Int. Symposium on Silicon Compatible Materials, Processes, and Technologies for Advanced Integrated Circuits and Emerging Applications, 233rd Meeting of The Electrochemical-Society (ECS), 2018, 85, 59; c) I.-K. Kim, B.-G. Cho, J.-G. Park, J.-Y. Park, H.-S. Park, J. Electrochem. Soc. 2009, 156, H188; d) C. Wang, J. Zhou, C. Luo, C. Wang, X. Zhang, Mater. Sci. Eng. B 2020, 262, 114764; e) C. Wang, C. Wang, H. Li, J. Zhou, X. Zhang, Y. Tian, C. Xu, ECS J. Solid State Sci. Technol. 2021, 10, 034337; f) L. Jiang, Y. He, Y. Li, J. Luo, Appl. Surf. Sci. 2014, 317, 332; g) K. Yadav, R. Manivannan, S. N. Victoria, presented at Int. Conf. Nanotechnology – Ideas, Innovations and Initiatives (ICN3I), Tamil Nadu, December, 2019, 1220; h) M. Liu, D. Yin, B. Tan, F. Yang, X. Sun, P. Gao, S. Zhang, Y. Wang, Electron. Mater. Lett. 2021, 17, 109.
- 7H. Cui, J.-H. Park, J.-G. Park, ECS J. Solid State Sci. Technol. 2013, 2, P26.
- 8J. Cheng, T. Wang, X. Lu, ECS J. Solid State Sci. Technol. 2020, 9, P62.
- 9J. Cheng, J. Pan, T. Wang, X. Lu, Corros. Sci. 2018, 137, 184.
- 10Y. Du, C. Wang, J. Zhou, W. Zhang, J. Ji, L. Han, Y. Li, ECS J. Solid State Sci. Technol. 2017, 6, P521.
- 11a) V. R. K. Gorantla, K. A. Assiongbon, S. V. Babu, D. Roy, J. Electrochem. Soc. 2005, 152, G404; b) S. V. S. B. Janjam, S. Peddeti, D. Roy, S. V. Babu, Electrochem. Solid-State Lett. 2008, 11, H327; c) L. Jiang, Y. He, Y. Li, Y. Li, J. Luo, Microelectron. Eng. 2014, 122, 82; d) H.-S. Lu, X. Zeng, J.-X. Wang, F. Chen, X.-P. Qu, J. Electrochem. Soc. 2012, 159, C383; e) J. Lu, J. E. Garland, C. M. Pettit, S. V. Babu, D. Roy, J. Electrochem. Soc. 2004, 151, G717; f) R. Popuri, K. V. Sagi, S. R. Alety, B. C. Peethala, H. Amanapu, R. Patlolla, S. V. Babu, ECS J. Solid State Sci. Technol. 2017, 6, P594.
- 12a) D. Kolodynska, Z. Hubicki, Canadian J. Chem. 2008, 86, 958; b) Y. V. Nancharaiah, N. Schwarzenbeck, T. V. K. Mohan, S. V. Narasimhan, P. A. Wilderer, V. P. Venugopalan, Water Res. 2006, 40, 1539.
- 13X. Zhang, G. Pan, L. Hu, H. Wang, C. Wang, Colloids Surf., A 2020, 605, 125392.
- 14T. P. Luxton, M. J. Eick, K. G. Scheckel, J. Colloid Interface Sci. 2011, 359, 30.
- 15E. McCafferty, Corros. Sci. 2005, 47, 3202.
- 16a) R. C. Ribera, R. W. E. van de Kruijs, S. Kokke, E. Zoethout, A. E. Yakshin, F. Bijkerk, Appl. Phys. Lett. 2014, 105, 131601.
10.1063/1.4896993 Google Scholarb) J. Stojadinovic, L. Mendia, D. Bouvet, M. Declercq, S. Mischler, Wear 2009, 267, 186.
- 17M. C. Turk, S. E. Rock, H. P. Amanapu, L. G. Teugels, D. Roy, ECS J. Solid State Sci. Technol. 2013, 2, P205.
- 18P. Ma, Z. Zhang, J. Wang, H. Li, H. Y. Yang, Y. Shi, Adv. Sci. 2023, 10, 2304465.
- 19Y. Qiang, S. Zhang, B. Tan, S. Chen, Corros. Sci. 2018, 133, 6.
- 20Y. Xu, T. Ma, Y. Liu, B. Tan, S. Zhang, Y. Wang, G. Song, RSC Adv. 2021, 12, 228.
- 21W. Hou, F. He, Z. Liu, Constr. Build. Mater. 2021, 289, 123169.
- 22a) A. Jain, Y. Shin, K. A. Persson, Nat. Rev. Mater. 2016, 1, 15004; b) I. B. Obot, D. D. Macdonald, Z. M. Gasem, Corros. Sci. 2015, 99, 1.
- 23C. Zhan, C. Lian, Y. Zhang, M. W. Thompson, Y. Xie, J. Wu, P. R. C. Kent, P. T. Cummings, D.-E. Jiang, D. J. Wesolowski, Adv. Sci. 2017, 4, 1700059.
- 24S. K. Alghamdi, F. Abbas, R. K. Hussein, A. G. Alhamzani, N. T. El-Shamy, J. Mol. Struct. 2023, 1271, 134001.
- 25V. V. Mehmeti, A. R. Berisha, Front Chem. 2017, 5, 61.
- 26a) A. D. Becke, J. Chem. Phys. 2014, 140, 18A301; b) M. Bogojeski, L. Vogt-Maranto, M. E. Tuckerman, K.-R. Mueller, K. Burke, Nat. Commun. 2020, 11, 5223; c) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2019, 150, 154122; d) K. F. Garrity, J. W. Bennett, K. M. Rabe, D. Vanderbilt, Comput. Mater. Sci. 2014, 81, 446; e) H. S. Yu, S. L. Li, D. G. Truhlar, J. Chem. Phys. 2016, 145, 130901.
- 27H. Wang, Y. Hao, S. Chen, M. Cheng, C. Li, S. Sun, S. Hu, Corros. Sci. 2018, 137, 33.
- 28S. Babaei, M. Niad, Polyhedron 2020, 188, 114710.
- 29X. Zhang, F. Zhou, S. Zhang, Y. Liang, R. Wang, Adv. Sci. 2019, 6, 1900090.
- 30L. Hu, X. Zhang, H. Wang, J. Zhang, R. Xia, J. Cao, G. Pan, Electrochim. Acta 2021, 375, 137977.
- 31J. Zhou, X. Niu, C. Yang, Z. Huo, Y. Lu, Z. Wang, Y. Cui, R. Wang, Appl. Surf. Sci. 2020, 529, 147109.
- 32A. Sadkowski, Solid State Ionics 2005, 176, 1987.
- 33a) B. Tan, S. Zhang, H. Liu, Y. Qiang, W. Li, L. Guo, S. Chen, J. Taiwan Inst. Chem. Eng. 2019, 102, 424; b) X. Zhang, L. Hu, C. Li, J. Liu, G. Pan, J. Mol. Liquids 2021, 328, 115502.
- 34a) M. P. Desimone, G. Grundmeier, G. Gordillo, S. N. Simison, Electrochim. Acta 2011, 56, 2990; b) X. Lu, T. Zhang, Y. Lv, X. Zhang, Z. Dong, Mater. Chem. Phys. 2022, 276, 125376.
- 35a) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580; b) Y. Qiang, S. Zhang, L. Guo, X. Zheng, B. Xiang, S. Chen, Corros. Sci. 2017, 119, 68; c) H. Wang, L. Hu, G. Cao, R. Xia, J. Cao, J. Zhang, G. Pan, ACS Appl. Mater. Interfaces 2022, 14, 28321.
- 36J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
- 37J. Oláh, C. Van Alsenoy, A. B. Sannigrahi, J. Phys. Chem. A 2002, 106, 3885.