Nitrogen and Sulfur Co-Doped Carbon-Coated Ni3S2/MoO2 Nanowires as Bifunctional Catalysts for Alkaline Seawater Electrolysis
Xiaocheng Fan
Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Search for more papers by this authorBei Li
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Chunling Zhu
Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feng Yan
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXitian Zhang
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorCorresponding Author
Yujin Chen
Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiaocheng Fan
Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Search for more papers by this authorBei Li
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Chunling Zhu
Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feng Yan
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXitian Zhang
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorCorresponding Author
Yujin Chen
Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Bifunctional catalysts have inherent advantages in simplifying electrolysis devices and reducing electrolysis costs. Developing efficient and stable bifunctional catalysts is of great significance for industrial hydrogen production. Herein, a bifunctional catalyst, composed of nitrogen and sulfur co-doped carbon-coated trinickel disulfide (Ni3S2)/molybdenum dioxide (MoO2) nanowires (NiMoS@NSC NWs), is developed for seawater electrolysis. The designed NiMoS@NSC exhibited high activity in alkaline electrolyte with only 52 and 191 mV overpotential to attain 10 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Significantly, the electrolyzer (NiMoS@NSC||NiMoS@NSC) based on this bifunctional catalyst drove 100 mA cm−2 at only 1.71 V along with a robust stability over 100 h in alkaline seawater, which is superior to a platinum/nickel-iron layered double hydroxide couple (Pt||NiFe LDH). Theoretical calculations indicated that interfacial interactions between Ni3S2 and MoO2 rearranged the charge at interfaces and endowed Mo sites at the interfaces with Pt-like HER activity, while Ni sites on Ni3S2 surfaces at non-interfaces are the active centers for OER. Meanwhile, theoretical calculations and experimental results also demonstrated that interfacial interactions improved the electrical conductivity, boosting reaction kinetics for both HER and OER. This study presented a novel insight into the design of high-performance bifunctional electrocatalysts for seawater splitting.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202309655-sup-0001-SuppMat.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Y. Yang, M. Driess, P. W. Menezes, Adv. Energy Mater. 2021, 11, 2102074.
- 2M. A. Khan, H. B. Zhao, W. W. Zou, Z. Chen, W. J. Cao, J. H. Fang, J. Q. Xu, L. Zhang, J. J. Zhang, Electrochem. Energy R. 2018, 1, 483.
10.1007/s41918-018-0014-z Google Scholar
- 3Q. Q. He, Z. Wang, L. J. Meng, Q. Chen, Y. J. Gong, Chem. J. Chinese U. 2021, 42, 523.
- 4J. Y. Liu, S. Duan, H. Shi, T. Y. Wang, X. X. Yang, Y. H. Huang, G. Wu, Q. Li, Angew. Chem., Int. Ed. 2022, 61, e202210753.
- 5K. Zhang, M. Xu, J. Wang, Z. Chen, Nanoscale. 2023, 15, 17525.
- 6X. Fan, C. Zhu, Y. He, F. Yan, S.-L. Chou, M. Liu, X. Zhang, Y. Chen, ChemSusChem. 2023, 16, e202300984.
- 7X. Fan, B. Li, C. Zhu, F. Yan, Y. Chen, Nanoscale. 2023, 15, 16403.
- 8H. Shi, T. Wang, J. Liu, W. Chen, S. Li, J. Liang, S. Liu, X. Liu, Z. Cai, C. Wang, D. Su, Y. Huang, L. Elbaz, Q. Li, Nat. Commun. 2023, 14, 3934.
- 9J. Liu, S. Duan, H. Shi, T. Wang, X. Yang, Y. Huang, G. Wu, Q. Li, Angew. Chem., Int. Ed. 2022, 61, e202210753.
- 10Y. Gao, Y. R. Xue, F. He, Y. L. Li, P. Natl. Acad. Sci. USA. 2022, 119, e2206946119.
- 11F. H. Zhang, L. Yu, L. B. Wu, D. Luo, Z. F. Ren, Trends Chem. 2021, 3, 485.
- 12H. M. Wu, C. Q. Feng, L. Zhang, J. J. Zhang, D. P. Wilkinson, Electrochem. Energy R. 2021, 4, 473.
- 13M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Schafer, Chem. Soc. Rev. 2022, 51, 4583.
- 14J. Liu, X. Liu, H. Shi, J. Luo, L. Wang, J. Liang, S. Li, L.-M. Yang, T. Wang, Y. Huang, Q. Li, Appl. Catal. B Environ. 2022, 302, 120862.
- 15Y. Z. Wang, M. Yang, Y. M. Ding, N. W. Li, L. Yu, Adv. Funct. Mater. 2022, 32, 2108681.
- 16Y. Hou, X. D. Zhuang, X. L. Feng, Small Methods. 2017, 1, 1700090.
- 17X. J. She, H. Xu, L. Li, Z. Mo, X. W. Zhu, Y. H. Yu, Y. H. Song, J. J. Wu, J. C. Qian, S. Q. Yuan, H. M. Li, Appl. Catal. B Environ. 2019, 245, 477.
- 18S. L. Wang, J. Li, S. J. Wang, J. Wu, T. I. Wong, M. L. Foo, W. Chen, K. Wu, G. Q. Xu, ACS Catal. 2017, 7, 6892.
- 19Z. J. Chen, X. G. Duan, W. Wei, S. B. Wang, B. J. Ni, Nano Energy. 2020, 78, 105270.
- 20K. Mamtani, D. Jain, D. Dogu, V. Gustin, S. Gunduz, A. C. Co, U. S. Ozkan, Appl. Catal. B Environ. 2018, 220, 88.
- 21A. Sivanantham, P. Ganesan, S. Shanmugam, Appl. Catal. B Environ. 2018, 237, 1148.
- 22W. Ou, X. Ye, Y. C. Zhou, Coordin. Chem. Rev. 2023, 493, 215274.
- 23A. Larsson, A. Grespi, G. Abbondanza, J. Eidhagen, D. Gajdek, K. Simonov, X. Yue, U. Lienert, Z. Hegedüs, A. Jeromin, T. F. Keller, M. Scardamaglia, A. Shavorskiy, L. R. Merte, J. Pan, E. Lundgren, Adv. Mater. 2023, 35, 2304621.
- 24S. Li, B. B. Chen, Y. Wang, M. Y. Ye, P. A. van Aken, C. Cheng, A. Thomas, Nat. Mater. 2021, 20, 1240.
- 25M. J. Cui, C. P. Yang, B. Y. Li, Q. Dong, M. L. Wu, S. Hwang, H. Xie, X. Z. Wang, G. F. Wang, L. B. Hu, Adv. Energy Mater. 2021, 11, 141444.
- 26D. Xiong, X. He, X. Liu, S. Gong, C. Xu, Z. Tu, D. Wu, J. Wang, Z. Chen, Small. 2023.
- 27M. Feng, J. L. Huang, Y. Peng, C. R. Huang, X. Yue, S. M. Huang, ACS Nano. 2022, 16, 13834.
- 28J. M. Li, H. Wang, X. Xiao, Energy Environ. Mater. 2020, 3, 306.
- 29Y. L. Zhu, W. Zhou, Y. J. Zhong, Y. F. Bu, X. Y. Chen, Q. Zhong, M. L. Liu, Z. P. Shao, Adv. Energy Mater. 2017, 7, 1602122.
- 30M. Kuang, P. Han, Q. H. Wang, J. Li, G. F. Zheng, Adv. Funct. Mater. 2016, 26, 8555.
- 31C. H. Chiang, Y. C. Yang, J. W. Lin, Y. C. Lin, P. T. Chen, C. L. Dong, H. M. Lin, K. M. Chan, Y. T. Kao, K. Suenaga, P. W. Chiu, C. W. Chen, ACS Nano. 2022, 16, 18274.
- 32Z. X. Li, X. Zhang, Y. K. Kang, C. C. Yu, Y. Y. Wen, M. L. Hu, D. Meng, W. Y. Song, Y. Yang, Adv. Sci. 2021, 8, 2002631.
- 33N. Jiang, B. You, M. L. Sheng, Y. J. Sun, Angew. Chem., Int. Ed. 2015, 54, 6251.
- 34J. Hu, A. Al-Salihy, J. Wang, X. Li, Y. F. Fu, Z. H. Li, X. J. Han, B. Song, P. Xu, Adv. Sci. 2021, 8, 2103314.
- 35Q. Zhou, R. Sun, Y. Ren, R. Tian, J. Yang, H. Pang, K. Huang, X. Tian, L. Xu, Y. Tang, Carbon Energy. 2022, 5, e273.
10.1002/cey2.273 Google Scholar
- 36B. Cao, Q. Liu, Y. Zheng, X. Tang, J. Chai, S. Ma, W. Wang, G. Li, Adv. Funct. Mater. 2021, 32, 2110715.
- 37H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. Meng, K. Wu, J. Ye, ACS Nano. 2016, 10, 684.
- 38B. Zhang, J. W. Shan, W. L. Wang, P. Tsiakaras, Y. Y. Li, Small. 2022, 18, 2106012.
- 39L. Yu, Q. Zhu, S. W. Song, B. McElhenny, D. Z. Wang, C. Z. Wu, Z. J. Qin, J. M. Bao, Y. Yu, S. Chen, Z. F. Ren, Nat. Commun. 2019, 10, 5106.
- 40Y. Li, L. H. Wee, J. A. Martens, I. F. J. Vankelecom, J. Membrane Sci. 2017, 523, 561.
- 41H. Wang, S. X. Min, C. Ma, Z. X. Liu, W. Y. Zhang, Q. Wang, D. B. Li, Y. Y. Li, S. Turner, Y. Han, H. B. Zhu, E. Abou-Hamad, M. N. Hedhili, J. Pan, W. L. Yu, K. W. Huang, L. J. Li, J. Y. Yuan, M. Antonietti, T. Wu, Nat. Commun. 2017, 8, 13592.
- 42Y. S. Jin, H. T. Wang, J. J. Li, X. Yue, Y. J. Han, P. K. Shen, Y. Cui, Adv. Mater. 2016, 28, 3785.
- 43B. X. Wu, H. Qian, Z. W. Nie, Z. P. Luo, Z. X. Wu, P. Liu, H. He, J. H. Wu, S. G. Chen, F. F. Zhang, J. Energy Chem. 2020, 46, 178.
- 44Y. Zhou, Y. M. Wang, D. Q. Kong, Q. Q. Zhao, L. Zhao, J. L. Zhang, X. M. Chen, Y. A. Li, Y. Xu, C. Meng, Adv. Funct. Mater. 2023, 33, 2210656.
- 45Y. Q. Xue, X. J. Bai, Y. Y. Xu, Q. Yan, M. Zhu, K. Zhu, K. Ye, J. Yan, D. X. Cao, G. L. Wang, Compos. B Eng. 2021, 224, 109229.
- 46Y. Wang, Y. Sun, F. Yan, C. L. Zhu, P. Gao, X. T. Zhang, Y. J. Chen, J. Mater. Chem. A. 2018, 6, 8479.
- 47Y. Zhang, Q. Shao, S. Long, X. Q. Huang, Nano Energy. 2018, 45, 448.
- 48K. H. Kim, D. Hong, M. G. Kim, W. Choi, T. Min, Y. M. Kim, Y. H. Choi, ACS Materials Lett. 2023, 5, 1196.
- 49D. D. Li, Q. Zhang, Z. C. Shen, K. Siddharth, L. J. Chen, M. H. Shao, Z. C. Shi, Nano Energy. 2022, 91, 106644.
- 50S. Anantharaj, S. Noda, Energy Environ. Sci. 2022, 15, 1461.
- 51F. Yu, H. Q. Zhou, Z. Zhu, J. Y. Sun, R. He, J. M. Bao, S. Chen, Z. F. Ren, ACS Catal. 2017, 7, 2052.
- 52J. Chen, L. Zhang, J. Li, X. He, Y. Zheng, S. Sun, X. Fang, D. Zheng, Y. Luo, Y. Wang, J. Zhang, L. Xie, Z. Cai, Y. Sun, A. A. Alshehri, Q. Kong, C. Tang, X. Sun, J. Mater. Chem. A. 2023, 11, 1116.
- 53H. Sun, J. Sun, Y. Song, Y. Zhang, Y. Qiu, M. Sun, X. Tian, C. Li, Z. Lv, L. Zhang, ACS Appl. Mater. Interfaces. 2022, 14, 22061.
- 54Z. Y. Pan, M. Yaseen, P. K. Shen, Y. Z. Zhan, J. Colloid Interf. Sci. 2022, 616, 422.
- 55H. B. Ma, Z. W. Chen, Z. L. Wang, C. V. Singh, Q. Jiang, Adv. Sci. 2022, 9, 2105313.
- 56Q. P. Yu, X. B. Liu, G. S. Liu, X. P. Wang, Z. J. Li, B. Li, Z. X. Wu, L. Wang, Adv. Funct. Mater. 2022, 32, 2205767.
- 57S. J. Chu, W. Chen, G. L. Chen, J. Huang, R. Zhang, C. S. Song, X. Q. Wang, C. R. Li, K. Ostrikov, Appl. Catal. B Environ. 2019, 243, 537.
- 58C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347.
- 59C. C. L. McCrory, S. H. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977.
- 60Z. F. Huang, J. J. Song, Y. H. Du, S. B. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. C. J. Xu, X. Wang, Nat. Energy. 2019, 4, 329.
- 61M. Lin, M. Gu, X. Deng, Q. Xie, X. Zhang, Chem. Eng. J. 2023, 468, 143705.
- 62M. Kim, K. Min, D. Ko, H. Seong, S. Eun Shim, S.-H. Baeck, J. Colloid Interf. Sci. 2023, 650, 1851.
- 63W. Y. Fu, Y. X. Lin, M. S. Wang, S. Si, L. Wei, X. S. Zhao, Y. S. Wei, Rare Met. 2022, 41, 3069.
- 64D. B. Malavekar, V. C. Lokhande, D. J. Patil, S. B. Kale, U. M. Patil, T. Ji, C. D. Lokhande, J. Colloid Interf. Sci. 2022, 609, 734.
- 65T. Cui, X. Zhai, L. Guo, J.-Q. Chi, Y. Zhang, J. Zhu, X. Sun, L. Wang, Chinese J. Catal. 2022, 43, 2202.
- 66J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Nat. Commun. 2017, 8, 15437.
- 67K. Ren, Z. Liu, T. Wei, Z. J. Fan, Nano-Micro Lett. 2021, 13, 129.