Self-healable, Tolerant Superaerophobic Coating for Improving Electrochemical Hydrogen Production
Hrisikesh Sarma
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorSubhankar Mandal
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorAngana Borbora
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorJaysri Das
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorSaurav Kumar
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorCorresponding Author
Uttam Manna
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
School of Health Science & Technology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
E-mail: [email protected]
Search for more papers by this authorHrisikesh Sarma
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorSubhankar Mandal
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorAngana Borbora
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorJaysri Das
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorSaurav Kumar
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Search for more papers by this authorCorresponding Author
Uttam Manna
Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
School of Health Science & Technology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039 India
E-mail: [email protected]
Search for more papers by this authorAbstract
Gas-evolving electrodes often suffer from the blocking of catalytic active sites—due to unwanted and unavoidable adhesion of generated gas bubbles, which elevates the overpotential for the electrochemical hydrogen evolution reaction (HER)— by raising the resistance of the electrode. Here, a catalyst-free and self-healable superaerophobic coating having ultra-low bubble adhesion is introduced for achieving significantly depleted overpotentials of 209 and 506 mV at both low (50 mA cm−2) and high (500 mA cm−2) current densities, respectively, compared to a bare nickel-foam electrode. The optimized coating ensured an early detachment of the generated tiny (0.8 ± 0.1 mm) gas bubble—and thus, prevented the undesired rise in resistance of the coated electrode. The systematic association of physical (i.e., ionic interactions, H-bonding, etc.) cross-linkage, β-amino ester type covalent cross-linkage and reinforced halloysite nano clay enables the design of such functional material embedded with essential characteristics—including improved mechanical (toughness of 63.7 kJ m−3, and tensile modulus of 26 kPa) property and chemical (extremes of pH (1 and 14), salinity, etc.) stability, rapid (<10 min) self-healing ability (even at alkaline condition) and desired bubble-wettability (bubble contact angle of 158.2 ± 0.2°) with ultralow force (4.2 ± 0.4 µN) of bubble adhesion.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202309359-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
smll202309359-sup-0002-MovieS1.avi702.4 KB | Supplemental Movie 1 |
smll202309359-sup-0003-MovieS2.avi5.6 MB | Supplemental Movie 2 |
smll202309359-sup-0004-MovieS3.avi2.5 MB | Supplemental Movie 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) A. Odenweller, F. Ueckerdt, G. F. Nemet, M. Jensterle, G. Luderer, Nat. Energy 2022, 7, 854. b) IRENA, Green hydrogen for industry: A guide to policy making, International Renewable Energy Agency 2021, ISBN: 978-92-9260-344-1. c) E. Zeyen, M. Victoria, T. Brown, Nat. Commun. 2023, 14, 3743.
- 2a) Y. Li, X. Wei, L. Chen, J. Shi, Angew. Chem., Int. Ed. 2021, 60, 19550. b) H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin, L. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci. 2018, 11, 2858.
- 3a) C. Deng, C. Y. Toe, X. Li, J. Tan, H. Yang, Q. Hu, C. He, Adv. Energy Mater. 2022, 12, 2201047. b) B. You, M. T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng, H. Li, Adv. Mater. 2019, 31, 1807001. c) H. Wang, Z. Lu, S. Xu, D. Kong, J. J. Cha, G. Zheng, P.-C. Hsu, K. Yan, D. Bradshaw, F. B. Prinz, Y. Cui, Proc. Natl. Acad. Sci 2013, 110, 19701.
- 4a) H. Wang, X.-B. Li, L. Gao, H.-L. Wu, J. Yang, L. Cai, T.-B. Ma, C.-H. Tung, L.-Z. Wu, G. Yu, Angew. Chem., Int. Ed. 2018, 57, 192. b) H. Huang, M. Yan, C. Yang, H. He, Q. Jiang, L. Yang, Z. Lu, Z. Sun, X. Xu, Y. Bando, Y. Yamauchi, Adv. Mater. 2019, 31, 1903415.
- 5a) L. Lifang, D. Shiwen, G. Xiangyang, X. Yejun, Y. Zixi, Y. Nengcong, B. Yunfeng, Z. Xunjin, J. Shengye, F. Zhaochi, Z. Fuxiang, J. Am. Chem. Soc. 2022, 144, 2747. b) Y. Jun, S. Yong, S. Yamei, X. Jiahui, L. Yanju, L. Guangqin, Angew. Chem., Int. Ed. 2023, 63, 202302220.
- 6a) X. Liu, L. Zheng, C. Han, H. Zong, G. Yang, S. Lin, A. Kumar, A. R. Jadhav, N. Q. Tran, Y. Hwang, J. Lee, S. Vasimalla, Z. Chen, S.-G. Kim, H. Lee, Adv. Funct. Mater. 2021, 31, 2100547. b) C. Li, Z. Chen, H. Yi, Angew. Chem., Int. Ed. 2020, 59, 15902.
- 7a) C. Gabrielli, F. Huet, R. P. Nogueira, Electrochim. Acta. 2005, 50, 3726. b) H. Qiu, K. Obata, Z. Yuan, T. Nishimoto, Y. Lee, K. Nagato, I. Kinefuchi, J. Shiomi, K. Takanabe, Langmuir 2023, 39, 4993.
- 8a) A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons Inc., New York 2001. b) C. Zhang, Z. Xu, N. Han, Y. Tian, T. Kallio, C. Yu, L. Jiang, Sci. Adv. 2023, 9, eadd6978. c) A. Angulo, P. Van Der Linde, H. Gardeniers, M. Modestino, D. Fernández Rivas, Joule 2020, 4, 555.
- 9R. Iwata, L. Zhang, K. L. Wilke, S. Gong, M. He, B. M. Gallant, E. N. Wang, Joule 2021, 5, 887.
- 10R. Su, H. A. Hsain, M. Wu, D. Zhang, X. Hu, Z. Wang, X. Wang, F.-T. Li, X. Chen, L. Zhu, Y. Yang, Y. Yang, X. Lou, S. J. Pennycook, Angew. Chem., Int. Ed. 2019, 58, 15076.
- 11D. Kim, I. Efe, H. Torlakcik, A. Terzopoulou, A. Veciana, E. Siringil, F. Mushtaq, C. Franco, D. Von Arx, S. Sevim, J. Puigmarttí-Luis, B. Nelson, N. A. Spaldin, C. Gattinoni, X.-Z. Chen, S. Pané, Adv. Mater. 2022, 34, 2110612.
- 12K. Ghosh, C. Iffelsberger, M. Konecný, J. Vyskocil, J. Michalicka, M. Pumera, Adv. Energy Mater. 2023, 13, 2203476.
- 13a) C. Yu, M. Cao, Z. Dong, K. Li, C. Yu, J. Wang, L. Jiang, Adv. Funct. Mater. 2016, 26, 6830. b) M. Zhang, Y. Gao, J. Li, Y. Xia, L. Yang, C. Jiang, X. Huang, T. Wang, J. He, Chem. Eur. J. 2023, 29, e202301589.
- 14a) L. Li, P. C. M. Laan, X. Yan, X. Cao, M. J. Mekkering, K. Zhao, L. Ke, X. Jiang, X. Wu, L. Li, L. Xue, Z. Wang, G. Rothenberg, N. Yan, Adv. Sci. 2023, 10, 2206180. b) Z. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li, X. Sun, X. Wang, H. Wang, J. Wang, J. Luo, X. Lei, L. Jiang, Adv. Mater. 2014, 26, 2683. c) Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu, P. Wan, X. Sun, L. Jiang, Adv. Funct. Mater. 2015, 25, 1737,. d) D. Jeon, J. Park, C. Shin, H. Kim, J.-W. Jang, D. W. Lee, J. Ryu, Sci. Adv. 2020, 6, eaaz3944.
- 15M. Bae, Y. Kang, D. W. Lee, D. Jeon, J. Ryu, Adv. Energy Mater. 2022, 12, 2201452.
- 16a) H.-H. Lin, C.-H. Lin, S.-C. Luo, ACS Appl. Mater. Interfaces 2023, 15, 29214.
b) X. Yu, Z.-Y. Yu, X.-L. Zhang, Y.-R. Zheng, Y. Duan, Q. Gao, R. Wu, B. Sun, M.-R. Gao, G. Wang, S.-H. Yu, J. Am. Chem. Soc. 2019, 141, 7537.
c) C.-L. Huang, K. Sasaki, D. S. Raja, C.-T. Hsieh, Y.-J. Wu, J.-T. Su, C.-C. Cheng, P.-Y. Cheng, S.-H. Lin, Y. Choi, S.-Y. Lu, Adv. Energy Mater. 2021, 11, 2101827.
d) W. Zhang, X. Jiang, Z. M. Dong, J. Wang, N. Zhang, J. Liu, G. R. Xu, L. Wang, Adv. Funct. Mater. 2021, 31, 2107181.
e) Q. Ren, L. Feng, C. Ye, X. Xue, D. Lin, S. Eisenberg, T. Kou, E. B. Duoss, C. Zhu, Y. Li, Adv. Energy Mater. 2023, 13, 2302073.
f) J. Lu, S. Chen, Y. Zhuo, X. Mao, D. Liu, Z. Wang, Adv. Funct. Mater. 2023, 33, 2308191.
g) X. Shi, X. Zheng, H. Wang, H. Zhang, M. Qin, B. Lin, M. Qi, S. Mao, H. Ning, R. Yang, L. Xi, Y. Wang, Adv. Funct. Mater. 2023, 33, 2307109.
h) Y. Kang, S. Lee, S. Han, D. Jeon, M. Bae, Y. Choi, D. W. Lee, J. Ryu, Adv. Funct. Mater. 2023, 2308827.
10.1002/adfm.202308827 Google Scholari) J. Park, D. Jeon, Y. Kang, J. Ryu, D. W. Lee, J. Mater. Chem. A 2023, 11, 1658.
- 17a) A. Borbora, M. Dhar, A. Shome, N. Barman, S. Roy, U. Manna, Adv. Funct. Mater. 2023, 33, 2302569. b) U. Baruah, U. Manna, Chem. Sci. 2021, 12, 2097. c) N. Jana, D. Parbat, B. Mondal, S. Das, U. Manna, J. Mater. Chem. A 2019, 7, 9120.
- 18K.-T. Huang, W.-H. Hung, Y.-C. Su, F.-C. Tang, L. D. Linh, C.-J. Huang, L.-H. Yeh, Adv. Funct. Mater. 2023, 33, 2211316.
- 19Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339.
- 20a) G. Baeza, C. Dessi, S. Costanzo, D. Zhao, S. Gong, A. Alegria, R. H. Colby, M. Rubinstein, D. Vlassopoulos, S. K. Kumar, Nat. Commun. 2016, 7, 11368. b) S. Mandal, A. Seth, V. Yadav, S. Kumari, M. Kumar, U. Ojha, ACS Appl. Polym. Mater. 2020, 2, 618.
- 21a) Luo, Mills, Gels 2019, 5, 40.
b) C. Creton, Macromolecules 2017, 21, 8297.
10.1021/acs.macromol.7b01698 Google Scholarc) S. T. Mohamed, S. Tirkes, A. O. Akar, U. Tayfun, Clay Miner. 2020, 55, 281.
- 22H. Ren, M. Zhu, K. Haraguchi, Macromolecules 2011, 44, 8516.
- 23a) S. Erdemir, S. Malkondu, S. Kararkurt, Analyst 2020, 145, 3725;
b) A. C. Dash, B. Dash, S. Praharaj, J. Chem. Soc. Dalton Trans. 1981, 2063.
10.1039/dt9810002063 Google Scholarc) N. Boehnke, C. Cam, E. Bat, T. Segura, H. D. Maynard, Biomacromolecules 2015, 16, 2101.
- 24a) X. Cao, H. Liu, X. Yang, J. Tian, B. Luo, M. Liu, Compos. Sci. Techno. 2020, 191, 108071. b) E. Abdullayev, V. Abbasov, A. Tursunbayeva, V. Portnov, H. Ibrahimov, G. Mukhtarova, Y. Lvov, ACS Appl. Mater. Interfaces 2013, 5, 4464.
- 25a) S. Talebian, M. Mehrali, N. Taebnia, C. P. Pennisi, F. B. Kadumudi, J. Foroughi, M. Hasany, M. Nikkhah, M. Akbari, G. Orive, A. Dolatshahi-Pirouz, Adv. Sci. 2019, 6, 1801664. b) S. Mandal, N. Pandey, S. Singh, A. Ranjan, U. Ojha, Mater. Chem. Front. 2019, 3, 690. c) S. L. Banerjee, M. Khamrai, P. P. Kundu, N. K. Singha, RSC Adv. 2016, 6, 81654. d) D.-H. Kim, Z. A. Akbar, Y. T. Malik, J.-W. Jeon, S.-Y. Jang, Nat. Commun. 2023, 14, 3246.
- 26K. Haraguchi, Polym J 2011, 43, 223.
- 27a) N. Sun, F. Lu, Y. Yu, L. Su, X. Gao, L. Zheng, ACS Appl. Mater. Interfaces 2020, 12, 11778. b) Y. Yang, X. Wang, F. Yang, H. Shen, D. Wu, Adv. Mater. 2016, 28, 7178.
- 28C. Dorrer, J. Rühe, Langmuir 2012, 28, 14968.