Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
Ziang Shang
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorXueting Feng
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorGuanzhen Chen
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorRong Qin
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Yunhu Han
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103 China
E-mail: [email protected]
Search for more papers by this authorZiang Shang
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorXueting Feng
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorGuanzhen Chen
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorRong Qin
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Yunhu Han
Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 China
Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The present energy crisis and environmental challenges may be efficiently resolved by converting carbon dioxide (CO2) into various useful carbon products. The development of more effective catalysts has been the main focus of current research on photocatalytic CO2 reduction. Due to their high atomic efficiency and superior catalytic activity, single-atom catalysts (SACs) have attracted considerable interest in catalytic CO2 conversion. This review discusses the current research developments, obstacles, and potential of SACs for photocatalytic CO2 reduction. And further, discusses the principle of photocatalytic carbon dioxide reduction. This work has compared and analyzed the effects of support materials and active site types in SACs on photocatalytic CO2 reduction performance. This work believes that by sharing these developments, some inspiration for the rational design and development of stable and effective photocatalytic CO2 reduction catalysts based on SACs can be provided.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) M. S. Dresselhaus, I. L. Thomas, Nature 2001, 414, 332; b) S. F. Hung, A. Xu, X. Wang, F. Li, S. H. Hsu, Y. Li, J. Wicks, E. G. Cervantes, A. S. Rasouli, Y. C. Li, M. Luo, D. H. Nam, N. Wang, T. Peng, Y. Yan, G. Lee, E. H. Sargent, Nat. Commun. 2022, 13, 819; c) C. Jia, K. Dastafkan, C. Zhao, Curr. Opin. Electrochem. 2022, 31, 100854.
- 2a) M. A. Eastwood, QJM 2021, 114, 227; b) T. L. Frolicher, E. M. Fischer, N. Gruber, Nature 2018, 560, 360; c) S. S. Chand, K. J. E. Walsh, S. J. Camargo, J. P. Kossin, K. J. Tory, M. F. Wehner, J. C. L. Chan, P. J. Klotzbach, A. J. Dowdy, S. S. Bell, H. A. Ramsay, H. Murakami, Nat. Clim. Change 2022, 12, 655.
- 3J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 2020, 32, 222.
- 4a) Y. Zhu, J. Sokolowski, X. Song, Y. He, Y. Mei, G. Wu, Adv. Energy Mater. 2019, 10, 1902844;
b) S. Zhang, D. J. DePaolo, Acc. Chem. Res. 2017, 50, 2075;
c) C. Liang, L. Pan, S. Liang, Y. Xia, Z. Liang, Y. Gan, H. Huang, J. Zhang, W. Zhang, Small 2019, 15, 1902249.
10.1002/smll.201902249 Google Scholard) M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, Nature 2016, 537, 382.
- 5a) J. Wu, S. Ma, J. Sun, J. I. Gold, C. Tiwary, B. Kim, L. Zhu, N. Chopra, I. N. Odeh, R. Vajtai, A. Z. Yu, R. Luo, J. Lou, G. Ding, P. J. Kenis, P. M. Ajayan, Nat. Commun. 2016, 7, 13869;
b) T. Kunene, L. Xiong, J. Rosenthal, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 9693;
c) D. Gao, I. Zegkinoglou, N. J. Divins, F. Scholten, I. Sinev, P. Grosse, B. R. Cuenya, ACS Nano 2017, 11, 4825;
d) X. Feng, Z. Shang, R. Qin, Y. Han, Acta Phys.-Chim. Sin. 2023, 0, 2305005.
10.3866/PKU.WHXB202305005 Google Scholar
- 6a) P. Prabhu, V. Jose, J. M. Lee, Adv. Funct. Mater. 2020, 30, 1910768; b) N. M. Martin, P. Velin, M. Skoglundh, M. Bauer, P.-A. Carlsson, Catal. Sci. Technol. 2017, 7, 1086; c) S. Chen, X. Li, H. Li, K. Chen, T. Luo, J. Fu, K. Liu, Q. Wang, M. Zhu, M. Liu, ChemSusChem 2023, 16, 202202251.
- 7a) T. Nakajima, Y. Tamaki, K. Ueno, E. Kato, T. Nishikawa, K. Ohkubo, Y. Yamazaki, T. Morimoto, O. Ishitani, J. Am. Chem. Soc. 2016, 138, 13818; b) Y. Chen, D. Wang, X. Deng, Z. Li, Catal. Sci. Technol. 2017, 7, 4893; c) S. Ning, H. Xu, Y. Qi, L. Song, Q. Zhang, S. Ouyang, J. Ye, ACS Catal. 2020, 10, 4726.
- 8a) J. Yu, T. Zhang, N. Wu, Sol. RRL 2021, 5, 2100252; b) Y. Xiong, H. Chen, Y. Hu, S. Yang, X. Xue, L. He, X. Liu, J. Ma, Z. Jin, Nano Lett. 2021, 21, 8693.
- 9a) S. Yu, A. J. Wilson, J. Heo, P. K. Jain, Nano Lett. 2018, 18, 2189; b) X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 2016, 9, 2177; c) A. Wagner, C. D. Sahm, E. Reisner, Nat. Catal. 2020, 3, 775; d) J. Low, B. Cheng, J. Yu, Appl. Surf. Sci. 2017, 392, 658.
- 10J. C. Hemminger, R. Carr, G. A. Somorjai, Chem. Phys. Lett. 1978, 57, 100.
- 11a) O. Ola, M. M. Maroto-Valer, J. Photochem. Photobiol., C Photochem. Rev. 2015, 24, 16; b) W. A. Thompson, E. Sanchez Fernandez, M. M. Maroto-Valer, ACS Sustainable Chem. Eng. 2020, 8, 4677.
- 12D. Xu, K. Li, B. Jia, W. Sun, W. Zhang, X. Liu, T. Ma, Carbon Energy 2022, 5, e230.
- 13K. Li, X. An, K. H. Park, M. Khraisheh, J. Tang, Catal. Today 2014, 224, 3.
- 14a) N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. He, P. Zapol, J. Am. Chem. Soc. 2011, 133, 3964; b) S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem., Int. Ed. 2013, 52, 7372.
- 15a) Y. Li, A. G. Walsh, D. Li, D. Do, H. Ma, C. Wang, P. Zhang, X. Zhang, Nanoscale 2020, 12, 17245; b) X. Zhang, H. Ma, M. Zhang, Y. Ma, ACS Catal. 2022, 12, 11024; c) U. Tumuluri, J. D. Howe, W. P. Mounfield, M. Li, M. Chi, Z. D. Hood, K. S. Walton, D. S. Sholl, S. Dai, Z. Wu, ACS Sustainable Chem. Eng. 2017, 5, 9295; d) Y. Xu, Y. Jia, Y. Zhang, R. Nie, Z. Zhu, J. Wang, H. Jing, Appl. Catal., B 2017, 205, 254.
- 16H. Gao, J. Wang, M. Jia, F. Yang, R. S. Andriamitantsoa, X. Huang, W. Dong, G. Wang, Chem. Eng. J. 2019, 374, 684.
- 17H. Zhao, F. Pan, Y. Li, J. Materiomics 2017, 3, 17.
- 18a) C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Chem. Rev. 2020, 120, 12175; b) W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 2014, 26, 4607; c) Z.-H. Xue, D. Luan, H. Zhang, X. W. Lou, Joule 2022, 6, 92.
- 19a) C. B. Hiragond, N. S. Powar, J. Lee, S. I. In, Small 2022, 18, e2201428; b) Y. Chen, H. Sun, B. C. Gates, Small 2021, 17, 2004665.
- 20N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Electrochem. Energy Rev. 2019, 2, 539.
- 21Z.-X. Wei, Y.-T. Zhu, J.-Y. Liu, Z.-C. Zhang, W.-P. Hu, H. Xu, Y.-Z. Feng, J.-M. Ma, Rare Met. 2021, 40, 767.
- 22a) B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634; b) S. Chen, M. Cui, Z. Yin, J. Xiong, L. Mi, Y. Li, ChemSusChem 2021, 14, 73; c) M. Fan, J. Cui, J. Wu, R. Vajtai, D. Sun, P. M. Ajayan, Small 2020, 16, 1906782; d) J. Xi, H. S. Jung, Y. Xu, F. Xiao, J. W. Bae, S. Wang, Adv. Funct. Mater. 2021, 31, 2008318.
- 23H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, X. Meng, J. Zhang, J. Ye, Angew. Chem., Int. Ed. 2016, 55, 14310.
- 24Q. Zhang, J. Guan, Adv. Funct. Mater. 2020, 30, 2000768.
- 25E. A. Reyes Cruz, D. Nishiori, B. L. Wadsworth, N. P. Nguyen, L. K. Hensleigh, D. Khusnutdinova, A. M. Beiler, G. F. Moore, Chem. Rev. 2022, 122, 16051.
- 26a) X. Zhang, F. Han, B. Shi, S. Farsinezhad, G. P. Dechaine, K. Shankar, Angew. Chem., Int. Ed. 2012, 51, 12732; b) J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, Y. Li, Adv. Mater. 2018, 30, 1705369; c) S. F. Hackett, R. M. Brydson, M. H. Gass, I. Harvey, A. D. Newman, K. Wilson, A. F. Lee, Angew. Chem., Int. Ed. 2007, 46, 8593.
- 27a) G. Huang, G. Lin, Q. Niu, J. Bi, L. Wu, J. Mater. Sci. Technol. 2022, 116, 41; b) M. Kou, W. Liu, Y. Wang, J. Huang, Y. Chen, Y. Zhou, Y. Chen, M. Ma, K. Lei, H. Xie, P. K. Wong, L. Ye, Appl. Catal., B 2021, 291, 120146.
- 28Y. Li, B. Li, D. Zhang, L. Cheng, Q. Xiang, ACS Nano 2020, 14, 10552.
- 29Y. Wang, D. He, H. Chen, D. Wang, J. Photochem. Photobiol., C 2019, 40, 117.
- 30a) J. Wu, Y. Huang, W. Ye, Y. Li, Adv. Sci. 2017, 4, 1700194; b) R. J. Lim, M. Xie, M. A. Sk, J.-M. Lee, A. Fisher, X. Wang, K. H. Lim, Catal. Today 2014, 233, 169; c) Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc., Faraday Trans. 1 1989, 85, 2309.
- 31X. Cui, F. Shi, Wuli Huaxue Xuebao 2020, 0, 2006080.
- 32N. S. Powar, C. B. Hiragond, D. Bae, S.-I. In, J. CO2 Util. 2022, 55, 101814.
- 33J. Albero, Y. Peng, H. García, ACS Catal. 2020, 10, 5734.
- 34J.-X. Yang, W.-B. Yu, C.-F. Li, W.-D. Dong, L.-Q. Jiang, N. Zhou, Z.-P. Zhuang, J. Liu, Z.-Y. Hu, H. Zhao, Y. Li, L. Chen, J. Hu, B.-L. Su, Chem. Eng. J. 2021, 420, 129695.
- 35Y. Chen, J. Lin, B. Jia, X. Wang, S. Jiang, T. Ma, Adv. Mater. 2022, 34, 2201796.
- 36L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong, Y. Zhang, Y. Bi, Angew. Chem., Int. Ed. 2020, 59, 6224.
- 37T. Li, H. Huang, S. Wang, Y. Mi, Y. Zhang, Nano Res. 2023, https://doi.org/10.1007/s12274-022-5234-1.
10.1007/s12274?022?5234?1 Google Scholar
- 38a) P. Chen, B. Lei, X. Dong, H. Wang, J. Sheng, W. Cui, J. Li, Y. Sun, Z. Wang, F. Dong, ACS Nano 2020, 14, 15841; b) B.-H. Lee, E. Gong, M. Kim, S. Park, H. R. Kim, J. Lee, E. Jung, C. W. Lee, J. Bok, Y. Jung, Y. S. Kim, K.-S. Lee, S.-P. Cho, J.-W. Jung, C.-H. Cho, S. Lebègue, K. T. Nam, H. Kim, S.-I. In, T. Hyeon, Energy Environ. Sci. 2022, 15, 601.
- 39H. Zhang, S. Zuo, M. Qiu, S. Wang, Y. Zhang, J. Zhang, X. W. D. Lou, Sci. Adv. 2020, 6, eabb9823.
- 40W. Zang, Z. Kou, S. J. Pennycook, J. Wang, Adv. Energy Mater. 2020, 10, 1903181.
- 41a) Y. Zhang, L. Guo, L. Tao, Y. Lu, S. Wang, Small Methods 2018, 3, 1800406; b) H. Xiong, A. K. Datye, Y. Wang, Adv. Mater. 2021, 33, 2004319.
- 42Y. Zhou, Y. Liang, J. Fu, K. Liu, Q. Chen, X. Wang, H. Li, L. Zhu, J. Hu, H. Pan, M. Miyauchi, L. Jiang, E. Cortes, M. Liu, Nano Lett. 2022, 22, 1963.
- 43X. Xiong, C. Mao, Z. Yang, Q. Zhang, G. I. N. Waterhouse, L. Gu, T. Zhang, Adv. Energy Mater. 2020, 10, 2002928.
- 44Y. Yu, X. Dong, P. Chen, Q. Geng, H. Wang, J. Li, Y. Zhou, F. Dong, ACS Nano 2021, 15, 14453.
- 45a) S. A. Bradley, W. Sinkler, D. A. Blom, W. Bigelow, P. M. Voyles, L. F. Allard, Catal. Lett. 2011, 142, 176; b) J. Wang, T. Heil, B. Zhu, C. W. Tung, J. Yu, H. M. Chen, M. Antonietti, S. Cao, ACS Nano 2020, 14, 8584.
- 46Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao, Chem. Rev. 2019, 119, 1806.
- 47a) S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang, X. Li, J. Dong, Q. Chen, W. Zhang, Z. Zhang, S. Liang, R. Yu, Y. Wang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2020, 59, 10651; b) C. Gao, S. Chen, Y. Wang, J. Wang, X. Zheng, J. Zhu, L. Song, W. Zhang, Y. Xiong, Adv. Mater. 2018, 30, 1704624.
- 48L. Guo, Y. You, H. Huang, N. Tian, T. Ma, Y. Zhang, J. Colloid Interface Sci. 2020, 568, 139.
- 49S. Meng, T. Kong, W. Ma, H. Wang, H. Zhang, Small 2019, 15, 1902691.
- 50E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A. D. Norman, New J. Chem. 2002, 26, 508.
- 51Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang, C. Tian, D. Zhao, H. Fu, J. Am. Chem. Soc. 2019, 141, 2508.
- 52M. Ma, Z. Huang, D. E. Doronkin, W. Fa, Z. Rao, Y. Zou, R. Wang, Y. Zhong, Y. Cao, R. Zhang, Y. Zhou, Appl. Catal., B 2022, 300, 120695.
- 53P. Liu, Z. Huang, X. Gao, X. Hong, J. Zhu, G. Wang, Y. Wu, J. Zeng, X. Zheng, Adv. Mater. 2022, 34, 2200057.
- 54Y. Wang, Y. Qu, B. Qu, L. Bai, Y. Liu, Z. D. Yang, W. Zhang, L. Jing, H. Fu, Adv. Mater. 2021, 33, 2105482.
- 55A. Call, M. Cibian, K. Yamamoto, T. Nakazono, K. Yamauchi, K. Sakai, ACS Catal. 2019, 9, 4867.
- 56P. Huang, J. Huang, S. A. Pantovich, A. D. Carl, T. G. Fenton, C. A. Caputo, R. L. Grimm, A. I. Frenkel, G. Li, J. Am. Chem. Soc. 2018, 140, 16042.
- 57J. Fu, L. Zhu, K. Jiang, K. Liu, Z. Wang, X. Qiu, H. Li, J. Hu, H. Pan, Y.-R. Lu, T.-S. Chan, M. Liu, Chem. Eng. J. 2021, 415, 128982.
- 58G. Gao, Y. Jiao, E. R. Waclawik, A. Du, J. Am. Chem. Soc. 2016, 138, 6292.
- 59P. Sharma, S. Kumar, O. Tomanec, M. Petr, J. Zhu Chen, J. T. Miller, R. S. Varma, M. B. Gawande, R. Zboril, Small 2021, 17, 2006478.
- 60L. Cheng, H. Yin, C. Cai, J. Fan, Q. Xiang, Small 2020, 16, 2002411.
- 61Y. Zhao, Z. D. Han, G. Y. Gao, W. Y. Zhang, Y. Qu, H. Y. Zhu, P. F. Zhu, G. F. Wang, Adv. Funct. Mater. 2021, 31, 2104976.
- 62Z. Han, Y. Zhao, G. Gao, W. Zhang, Y. Qu, H. Zhu, P. Zhu, G. Wang, Small 2021, 17, 2102089.
- 63L. Cheng, P. Zhang, Q. Wen, J. Fan, Q. Xiang, Chin. J. Catal. 2022, 43, 451.
- 64X. Shi, Y. Huang, Y. Bo, D. Duan, Z. Wang, J. Cao, G. Zhu, W. Ho, L. Wang, T. Huang, Y. Xiong, Angew. Chem., Int. Ed. 2022, 61, e202203063.
- 65Y. Yang, F. Li, J. Chen, J. Fan, Q. Xiang, ChemSusChem 2020, 13, 1979.
- 66R. Zhang, P. Li, F. Wang, L. Ye, A. Gaur, Z. Huang, Z. Zhao, Y. Bai, Y. Zhou, Appl. Catal., B 2019, 250, 273.
- 67J. Wang, S. Yin, Q. Zhang, F. Cao, Y. Xing, Q. Zhao, Y. Wang, W. Xu, W. Wu, M. Wu, J. Catal. 2021, 404, 89.
- 68H. Ou, C. Tang, Y. Zhang, A. M. Asiri, M.-M. Titirici, X. Wang, J. Catal. 2019, 375, 104.
- 69M. Liu, Z. Zhao, X. Duan, Y. Huang, Adv. Mater. 2019, 31, 1802234.
- 70a) J. N. Hansen, H. Prats, K. K. Toudahl, N. Morch Secher, K. Chan, J. Kibsgaard, I. Chorkendorff, ACS Energy Lett. 2021, 6, 1175; b) Z. Cui, W. Jiao, Z. Huang, G. Chen, B. Zhang, Y. Han, W. Huang, Small 2023, e2301465.
- 71D. Kan, D. Wang, Y. Cheng, R. Lian, B. Sun, K. Chen, W. Huo, Y. Wang, G. Chen, Y. Wei, ACS Appl. Mater. Interfaces 2021, 13, 52508.
- 72G. Bai, C. Liu, Z. Gao, B. Lu, X. Tong, X. Guo, N. Yang, Small 2019, 15, 1902951.
- 73M. G. Sensoy, H. Ustunel, D. Toffoli, Appl. Surf. Sci. 2020, 499, 143968.
- 74G. Huang, Q. Niu, J. Zhang, H. Huang, Q. Chen, J. Bi, L. Wu, Chem. Eng. J. 2022, 427, 131018.
- 75X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427.
- 76Y. Liu, B. Qu, Z. Zhang, J. Sun, X. Zhao, L. Bai, L. Jing, Mater. Res. Bull. 2022, 153, 111883.
- 77L. Cheng, X. Yue, L. Wang, D. Zhang, P. Zhang, J. Fan, Q. Xiang, Adv. Mater. 2021, 33, 2105135.
- 78G. Wang, Z. Chen, T. Wang, D. Wang, J. Mao, Angew. Chem., Int. Ed. 2022, 61, e202210789.
- 79S. Yan, S. Ouyang, H. Xu, M. Zhao, X. Zhang, J. Ye, J. Mater. Chem. A 2016, 4, 15126.
- 80M. Nemiwal, V. Subbaramaiah, T. C. Zhang, D. Kumar, Sci. Total Environ. 2021, 762, 144101.
- 81Z. Qian, R. Zhang, Y. Xiao, H. Huang, Y. Sun, Y. Chen, T. Ma, X. Sun, Adv. Energy Mater. 2023, 13, 2300086.
- 82a) A. Han, B. Wang, A. Kumar, Y. Qin, J. Jin, X. Wang, C. Yang, B. Dong, Y. Jia, J. Liu, X. Sun, Small Methods 2019, 3, 1800471; b) Y. Liu, S. Li, L. Dai, J. Li, J. Lv, Z. Zhu, A. Yin, P. Li, B. Wang, Angew. Chem., Int. Ed. 2021, 60, 16409.
- 83J. A. Johnson, J. Luo, X. Zhang, Y.-S. Chen, M. D. Morton, E. Echeverría, F. E. Torres, J. Zhang, ACS Catal. 2015, 5, 5283.
- 84G. H. Han, J. Bang, G. Park, S. Choe, Y. J. Jang, H. W. Jang, S. Y. Kim, S. H. Ahn, Small 2023, 19, e2205765.
- 85L. Jiang, Q. Yang, Z. Xia, X. Yu, M. Zhao, Q. Shi, Q. Yu, RSC Adv. 2023, 13, 5833.
- 86D. Li, M. Kassymova, X. Cai, S.-Q. Zang, H.-L. Jiang, Coord. Chem. Rev. 2020, 412, 213262.
- 87J. Li, H. Huang, W. Xue, K. Sun, X. Song, C. Wu, L. Nie, Y. Li, C. Liu, Y. Pan, H.-L. Jiang, D. Mei, C. Zhong, Nat. Catal. 2021, 4, 719.
- 88G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang, B. Jia, D. Su, T. Ma, Nano-Micro Lett. 2023, 15, 132.
- 89Y. N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng, J. Jiang, H. L. Jiang, J. Am. Chem. Soc. 2020, 142, 16723.
- 90X. Y. Dong, Y. N. Si, Q. Y. Wang, S. Wang, S. Q. Zang, Adv. Mater. 2021, 33, 2101568.
- 91B. Liu, J. Xie, H. Ma, X. Zhang, Y. Pan, J. Lv, H. Ge, N. Ren, H. Su, X. Xie, L. Huang, W. Huang, Small 2017, 13, 1601001.
- 92a) A. Bakandritsos, R. G. Kadam, P. Kumar, G. Zoppellaro, M. Medved, J. Tucek, T. Montini, O. Tomanec, P. Andryskova, B. Drahos, R. S. Varma, M. Otyepka, M. B. Gawande, P. Fornasiero, R. Zboril, Adv. Mater. 2019, 31, 1900323; b) Q. Zhang, Z. Duan, M. Li, J. Guan, Chem. Commun. 2020, 56, 794.
- 93L. Zhao, X. Han, W. Kong, Y. Tong, Y. Ding, J. Wang, B. Li, Y. Liu, J. Xu, W. Xing, Catal. Sci. Technol. 2022, 12, 530.
- 94Q. Wu, J. Wang, Z. Wang, Y. Xu, Z. Xing, X. Zhang, Y. Guan, G. Liao, X. Li, J. Mater. Chem. A 2020, 8, 13685.
- 95a) S. Ren, Q. Yu, X. Yu, P. Rong, L. Jiang, J. Jiang, Sci. China Mater. 2020, 63, 903; b) M. Liu, C. Liu, S. Gouse Peera, T. Liang, Chem. Phys. 2022, 559, 111536.
- 96P. Zhang, X. Zhan, L. Xu, X. Fu, T. Zheng, X. Yang, Q. Xu, D. Wang, D. Qi, T. Sun, J. Jiang, J. Mater. Chem. A 2021, 9, 26286.
- 97Y. Li, S. Wang, X. S. Wang, Y. He, Q. Wang, Y. Li, M. Li, G. Yang, J. Yi, H. Lin, D. Huang, L. Li, H. Chen, J. Ye, J. Am. Chem. Soc. 2020, 142, 19259.
- 98Z. Wang, J. Yang, J. Cao, W. Chen, G. Wang, F. Liao, X. Zhou, F. Zhou, R. Li, Z. Q. Yu, G. Zhang, X. Duan, Y. Wu, ACS Nano 2020, 14, 6164.
- 99a) S. Xie, Y. Wang, Q. Zhang, W. Deng, Y. Wang, ACS Catal. 2014, 4, 3644; b) Z. Jiang, X. Xu, Y. Ma, H. S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Peng, L. Zan, H. Deng, Nature 2020, 586, 549.
- 100Z. Liu, L. Sun, Q. Zhang, Z. Teng, H. Sun, C. Su, Chem. Res. Chin. Univ. 2022, 38, 1123.
- 101Y. Liao, S. W. Cao, Y. Yuan, Q. Gu, Z. Zhang, C. Xue, Chemistry 2014, 20, 10220.
- 102W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, S. B. Cronin, ACS Catal. 2011, 1, 929.
- 103L.-Y. Lin, S. Kavadiya, X. He, W.-N. Wang, B. B. Karakocak, Y.-C. Lin, M. Y. Berezin, P. Biswas, Chem. Eng. J. 2020, 389, 123450.
- 104Z. Jiang, W. Sun, W. Miao, Z. Yuan, G. Yang, F. Kong, T. Yan, J. Chen, B. Huang, C. An, G. A. Ozin, Adv. Sci. 2019, 6, 1900289.
- 105H. Pan, X. Wang, Z. Xiong, M. Sun, M. Murugananthan, Y. Zhang, Environ. Res. 2021, 198, 111176.
- 106S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, ChemSusChem 2013, 6, 562.
- 107a) X. Wang, Y. Zhu, H. Li, J. M. Lee, Y. Tang, G. Fu, Small Methods 2022, 6, 2200413; b) H. L. Wu, X. B. Li, C. H. Tung, L. Z. Wu, Adv. Mater. 2019, 31, 1900709.
- 108H. Zhang, Y. Wang, S. Zuo, W. Zhou, J. Zhang, X. W. D. Lou, J. Am. Chem. Soc. 2021, 143, 2173.
- 109L. Cheng, X. Yue, J. Fan, Q. Xiang, Adv. Mater. 2022, 34, 2200929.
- 110J. Ding, X. Liu, M. Shi, T. Li, M. Xia, X. Du, R. Shang, H. Gu, Q. Zhong, Sol. Energy Mater. Sol. Cells 2019, 195, 34.
- 111a) Y. Wang, H. Arandiyan, J. Scott, K.-F. Aguey-Zinsou, R. Amal, ACS Appl. Energy Mater. 2018, 1, 6781; b) Y. Li, J. Hao, H. Song, F. Zhang, X. Bai, X. Meng, H. Zhang, S. Wang, Y. Hu, J. Ye, Nat. Commun. 2019, 10, 2359.
- 112R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2017, 139, 4486.
- 113a) R. Zeng, K. Lian, B. Su, L. Lu, J. Lin, D. Tang, S. Lin, X. Wang, Angew. Chem., Int. Ed. Engl. 2021, 60, 25055; b) F. Chen, Z. Ma, L. Ye, T. Ma, T. Zhang, Y. Zhang, H. Huang, Adv. Mater. 2020, 32, 1908350.
- 114a) K. M. Cho, K. H. Kim, K. Park, C. Kim, S. Kim, A. Al-Saggaf, I. Gereige, H.-T. Jung, ACS Catal. 2017, 7, 7064; b) Y. X. Feng, H. J. Wang, J. W. Wang, W. Zhang, M. Zhang, T. B. Lu, ACS Appl. Mater. Interfaces 2021, 13, 26573.
- 115H. Pang, X. Meng, P. Li, K. Chang, W. Zhou, X. Wang, X. Zhang, W. Jevasuwan, N. Fukata, D. Wang, J. Ye, ACS Energy Lett. 2019, 4, 1387.
- 116H. Li, L. Zhang, Y. Cao, Appl. Surf. Sci. 2021, 541, 148519.
- 117N. Tian, C. Hu, J. Wang, Y. Zhang, T. Ma, H. Huang, Coord. Chem. Rev. 2022, 463, 214515.
- 118Y. Cao, L. Guo, M. Dan, D. E. Doronkin, C. Han, Z. Rao, Y. Liu, J. Meng, Z. Huang, K. Zheng, P. Chen, F. Dong, Y. Zhou, Nat. Commun. 2021, 12, 1675.
- 119S. Cai, M. Zhang, J. Li, J. Chen, H. Jia, Sol. RRL 2020, 5, 2000313.
- 120Q.-Q. Bi, J.-W. Wang, J.-X. Lv, J. Wang, W. Zhang, T.-B. Lu, ACS Catal. 2018, 8, 11815.
- 121L. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Nat. Energy 2020, 5, 61.
- 122a) T. Ouyang, H. H. Huang, J. W. Wang, D. C. Zhong, T. B. Lu, Angew. Chem., Int. Ed. 2017, 56, 738; b) D.-D. Ma, S.-G. Han, C. Cao, W. Wei, X. Li, B. Chen, X.-T. Wu, Q.-L. Zhu, Energy Environ. Sci. 2021, 14, 1544.
- 123S. Roy, M. Miller, J. Warnan, J. J. Leung, C. D. Sahm, E. Reisner, ACS Catal. 2021, 11, 1868.
- 124a) Y. H. Park, G. Murali, J. K. R. Modigunta, I. In, S. I. In, Front. Chem. 2021, 9, 734108; b) C. Du, X. Wang, W. Chen, S. Feng, J. Wen, Y. A. Wu, Mater. Today Adv. 2020, 6, 100071.
- 125X. Zhang, P. Ma, C. Wang, L. Gan, X. Chen, P. Zhang, Y. Wang, H. Li, L. Wang, X. Zhou, K. Zheng, Energy Environ. Sci. 2022, 15, 830.
- 126X. She, Y. Wang, H. Xu, S. Chi Edman Tsang, S. Ping Lau, Angew. Chem., Int. Ed. 2022, 61, e202211396.
- 127G.-Z. Chen, K.-J. Chen, J.-W. Fu, M. Liu, Rare Met. 2020, 39, 607.