Polyoxometalates@Metal-Organic Frameworks Derived Bimetallic Co/Mo2C Nanoparticles Embedded in Carbon Nanotube-Interwoven Hierarchically Porous Carbon Polyhedron Composite as a High-Efficiency Electrocatalyst for Al–S Batteries
Qiuping Zhou
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorXuecheng Zhang
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorYuchao Wu
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorXinyuan Jiang
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorTangsuo Li
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorMing Chen
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorCorresponding Author
Lubin Ni
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guowang Diao
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiuping Zhou
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorXuecheng Zhang
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorYuchao Wu
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorXinyuan Jiang
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorTangsuo Li
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorMing Chen
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorCorresponding Author
Lubin Ni
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guowang Diao
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Al–S battery (ASB) is a promising energy storage device, notable for its safety, crustal abundance, and high theoretical energy density. However, its development faces challenges due to slow reaction kinetics and poor reversibility. The creation of a multifunctional cathode material that can both adsorb polysulfides and accelerate their conversion is key to advancing ASB. Herein, a composite composed of polyoxometalate nanohybridization-derived Mo2C and N-doped carbon nanotube-interwoven polyhedrons (Co/Mo2C@NCNHP) is proposed for the first time as an electrochemical catalyst in the sulfur cathode. This composite improves the utilization and conductivity of sulfur within the cathode. DFT calculations and experimental results indicate that Co enables the chemisorption of polysulfides while Mo2C catalyzes the reduction reaction of long-chain polysulfides. X-ray photoelectron spectroscopy (XPS) and in situ UV analysis reveal the different intermediates of Al polysulfide species in Co/Mo2C@NCNHP during discharging/charging. As a cathode material for ASB, Co/Mo2C@NCNHP@S composite can deliver a discharge-charge voltage hysteresis of 0.75 V with a specific capacity of 370 mAh g−1 after 200 cycles at 1A g−1.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202304515-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Kim, L. Yin, M. H. Lee, P. Parajuli, L. Blanc, T. T. Fister, H. Park, B. J. Kwon, B. J. Ingram, P. Zapol, R. F. Klie, K. Kang, L. F. Nazar, S. H. Lapidus, J. T. Vaughey, ACS Energy Lett. 2020, 5, 3203.
- 2L. Wang, P. Jankowski, C. Njel, W. Bauer, Z. Li, Z. Meng, B. Dasari, T. Vegge, J. M. G. Lastra, Z. Zhao-Karger, M. Fichtner, Adv. Sci. 2022, 9, 2104605.
- 3Y. Sui, C. Liu, R. C. Masse, Z. G. Neale, M. Atif, M. AlSalhi, G. Cao, Energy Storage Mater. 2020, 25, 1.
- 4H. Li, R. Meng, Y. Guo, B. Chen, Y. Jiao, C. Ye, Y. Long, A. Tadich, Q. H. Yang, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2021, 12, E6.
- 5F. Wu, H. Yang, Y. Bai, C. Wu, Adv. Mater. 2019, 31, 1806510.
- 6X. Peng, Y. Xie, A. Baktash, J. Tang, T. Lin, X. Huang, Y. Hu, Z. Jia, D. J. Searles, Y. Yamauchi, L. Wang, B. Luo, Angew. Chem., Int. Ed. 2022, 61, e202206432.
10.1002/anie.202206432 Google Scholar
- 7G. Wu, C. Lv, W. Lv, X. Li, W. Zhang, Z. Li, J. Energy Chem. 2022, 74, 174.
- 8M. C. Lin, M. Gong, B. Lu, Y. Wu, D. Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. J. Hwang, H. Dai, Nature 2015, 520, 324.
- 9Y. Wu, M. Gong, M. C. Lin, C. Yuan, M. Angell, L. Huang, D. Y. Wang, X. Zhang, J. Yang, B. J. Hwang, H. Dai, Adv. Mater. 2016, 28, 9218.
- 10H. Huang, F. Zhou, X. Shi, J. Qin, Z. Zhang, X. Bao, Z. S. Wu, Energy Storage Mater. 2019, 23, 664.
- 11X. Li, M. Ma, W. Lv, G. Wu, R. Lian, W. Zhang, Z. Li, Nano Res. 2022, 15, 8136.
- 12L. Wang, H. Lin, W. Kong, Y. Hu, R. Chen, P. Zhao, M. Shokouhimehr, X. L. Zhang, Z. Tie, Z. Jin, Nanoscale 2020, 12, 12531.
- 13N. Canever, T. Nann, Nano Express 2020, 1, 010016.
10.1088/2632-959X/ab81e0 Google Scholar
- 14J. Liu, Z. Li, X. Huo, J. Li, J. Power Sources 2019, 422, 49.
- 15X. Yang, C. Zhang, L. Chai, W. Zhang, Z. Li, Adv. Mater. 2022, 34, 2206099.
- 16Q. Zhou, D. Wang, Y. Lian, S. Hou, C. Ban, Z. Wang, J. Zhao, H. Zhang, Electrochim. Acta 2020, 354, 136677.
- 17T. Cai, L. Zhao, H. Hu, T. Li, X. Li, S. Guo, Y. Li, Q. Xue, W. Xing, Z. Yan, L. Wang, Energy Environ. Sci. 2018, 11, 2341.
- 18Q. Zhou, D. Wang, Y. Wang, L. Ni, H. Zhang, J. Zhao, J. Phys. Chem. C 2022, 126, 2679.
- 19W. Lv, G. Wu, X. Li, J. Li, Z. Li, Energy Storage Mater. 2022, 46, 138.
- 20G. Wu, W. Lv, X. Li, W. Zhang, Z. Li, ACS Appl. Mater. Interfaces 2021, 13, 61107.
- 21S. K. Das, S. Mahapatra, H. Lahan, J. Mater. Chem. A 2017, 5, 6347.
- 22Q. Zhou, Y. Wu, J. Gautam, D. Wang, X. Jiang, Z. Ma, H. Zhang, L. Ni, G. Diao, Coord. Chem. Rev. 2023, 474, 214856.
- 23L. Ni, G. Zhao, Y. Wang, Z. Wu, W. Wang, Y. Liao, G. Yang, G. Diao, Chem. - Asian J. 2017, 12, 3128.
- 24Z. Ma, J. Gu, X. Jiang, G. Yang, Z. Wu, J. Xie, M. Chen, L. Ni, G. Diao, Catal. Sci. Technol. 2022, 12, 3431.
- 25W. Lu, Z. Wang, G. Sun, S. Zhang, L. Cong, L. Lin, S. Chen, J. Liu, H. Xie, Y. Liu, J. Energy Chem. 2023, 80, 32.
- 26J. Li, X. Li, X. Fan, T. Tang, M. Li, Y. Zeng, H. Wang, J. Wen, J. Xiao, Carbon N Y 2022, 188, 155.
- 27M. Xiang, H. Zhang, S. Feng, J. Xiao, X. Li, J. Electroanal. Chem. 2021, 900, 115721.
- 28M. Xiang, J. Li, S. Feng, H. Zhang, X. Cao, Y. Zeng, X. Li, J. Xiao, J. Colloid Interface Sci. 2022, 624, 471.
- 29S. Feng, J. Wang, J. Wen, X. Li, Z. Wang, Y. Zeng, J. Xiao, ACS Sustainable Chem. Eng. 2023, 11, 8544.
- 30R. Steudel, T. Chivers, Chem. Soc. Rev. 2019, 48, 3279.
- 31C. Li, C. C. Hou, L. Chen, S. Kaskel, Q. Xu, EnergyChem 2021, 3, 100049.
- 32H. Li, J. Lampkin, N. Garcia-Araez, ChemSusChem 2021, 14, 3139.
- 33Y. Guo, Z. Hu, J. Wang, Z. Peng, J. Zhu, H. Ji, L. Wan, Angew. Chem. 2020, 132, 23163.
- 34S. Feng, J. Wang, N. Gao, J. Wen, X. Li, J. Xiao, Electrochim. Acta 2022, 433, 141218.
- 35Y. Mo, J. Lin, S. Li, J. Yu, Chem. Eng. J. 2022, 433, 134306.
- 36N. Jiang, G. Jiang, D. Niu, J. Mao, M. Chen, K. Li, Y. Li, J. Energy Chem. 2020, 51, 207.
- 37H. Zhang, Z. Ma, S. Duan, Y. Liu, X. Jiang, Q. Zhou, M. Chen, L. Ni, G. Diao, Electrochim. Acta 2022, 428, 140868.
- 38J. Gautam, K. Kannan, M. M. Meshesha, B. Dahal, S. Subedi, L. Ni, Y. Wei, B. L. Yang, J. Colloid Interface Sci. 2022, 618, 419.
- 39G. Zhang, Y. Wang, Polyoxometalates 2023, 2, 9140020.
10.26599/POM.2023.9140020 Google Scholar
- 40J. Gautam, Y. Liu, J. Gu, Z. Ma, B. Dahal, A. Nabi Chishti, L. Ni, G. Diao, Y. Wei, J. Colloid Interface Sci. 2022, 614, 642.
- 41S.-R. Li, W.-D. Liu, L.-S. Long, L.-S. Zheng, X.-J. Kong, Polyoxometalates 2023, 2, 9140022.
10.26599/POM.2023.9140022 Google Scholar
- 42B. Li, L. Wu, Polyoxometalates 2023, 2, 9140016.
10.26599/POM.2022.9140016 Google Scholar
- 43J. Gautam, Y. Liu, J. Gu, Z. Ma, J. Zha, B. Dahal, L. Zhang, A. N. Chishti, L. Ni, G. Diao, Y. Wei, Adv. Funct. Mater. 2021, 31, 2106147.
- 44L. Zhang, T. Li, X. Zhang, Z. Ma, Q. Zhou, Y. Liu, X. Jiang, H. Zhang, L. Ni, G. Diao, J. Mater. Chem. A 2023, 11, 3105.
- 45Y. Wang, L. Wang, L. Zhang, C.-S. Liu, H. Pang, Inorg. Chem. Front. 2019, 6, 2514.
- 46X. Chen, Y. Liu, G. Yang, A. H. Qureshi, X. Yao, M. Zhou, X. Zhang, Y. Liu, J. Phys. Chem. 2021, 125, 15292.
- 47Y. Jin, X. Li, C. Ge, J. Ma, Y. Li, E. Zhao, S. Yao, G. Xu, D. Li, Microchim. Acta 2020, 187, 6.
- 48Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 2610.
- 49L. Ye, Y. Ying, D. Sun, J. Qiao, H. Huang, Nanoscale 2022, 14, 2065.
- 50Y. Y. Chen, Y. Zhang, W. J. Jiang, X. Zhang, Z. Dai, L. J. Wan, J. S. Hu, ACS Nano 2016, 10, 8851.
- 51X. Wu, Z. Yang, L. Xu, J. Wang, L. Fan, F. Kong, Q. Shi, Y. Piao, G. Diao, M. Chen, J. Energy Chem. 2022, 74, 8.
- 52X. Ye, J. Ruan, Y. Pang, J. Yang, Y. Liu, Y. Huang, S. Zheng, ACS Nano 2021, 15, 5639.
- 53C. Shang, L. Cao, M. Yang, Z. Wang, M. Li, G. Zhou, X. Wang, Z. Lu, Energy Storage Mater. 2019, 18, 375.
- 54Y. Guo, H. Jin, Z. Qi, Z. Hu, H. Ji, L. J. Wan, Adv. Funct. Mater. 2019, 29, 1807676.
- 55Y. Liu, Z. Ma, G. Yang, Z. Wu, Y. Li, J. Gu, J. Gautam, X. Gong, A. N. Chishti, S. Duan, C. Chen, M. Chen, L. Ni, G. Diao, Adv. Funct. Mater. 2022, 32, 2109462.
- 56L. Ni, S. Duan, H. Zhang, J. Gu, G. Zhao, Z. Lv, G. Yang, Z. Ma, Y. Liu, Y. Fu, Z. Wu, J. Xie, M. Chen, G. Diao, Carbon N Y 2021, 182, 335.
- 57Z. Hu, S. Xie, Y. Guo, Y. Ye, J. Zhang, S. Jin, H. Ji, J. Energy Chem. 2022, 67, 354.
- 58W. Chu, X. Zhang, J. Wang, S. Zhao, S. Liu, H. Yu, Energy Storage Mater. 2019, 22, 418.
- 59Y. Guo, Z. Hu, Y. Cui, J. Wang, S. Jin, Z. Peng, H. Ji, Batteries Supercaps 2022, 5, 202100355.
- 60T. Gao, X. Li, X. Wang, J. Hu, F. Han, X. Fan, L. Suo, A. J. Pearse, S. B. Lee, G. W. Rubloff, K. J. Gaskell, M. Noked, C. Wang, Angew. Chem. 2016, 128, 10052.
10.1002/ange.201603531 Google Scholar
- 61X. Yu, A. Manthiram, Adv. Energy Mater. 2017, 7, 1700561.
- 62N. S. A. Manan, L. Aldous, Y. Alias, P. Murray, L. J. Yellowlees, M. C. Lagunas, C. Hardacre, J. Phys. Chem. B 2011, 115, 13873.