Temperature Effects on Electrochemical Energy-Storage Materials: A Case Study of Yttrium Niobate Porous Microspheres
Songjie Li
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438 China
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorJiazhe Gao
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorYinjun Ou
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorXuehua Liu
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorLiting Yang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Liming Wu
Inner Mongolia University, Hohhot, 010021 China
E-mails: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chunfu Lin
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438 China
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
E-mails: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Renchao Che
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438 China
Zhejiang Laboratory, Hangzhou, 311100 China
E-mails: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSongjie Li
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438 China
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorJiazhe Gao
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorYinjun Ou
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorXuehua Liu
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorLiting Yang
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Liming Wu
Inner Mongolia University, Hohhot, 010021 China
E-mails: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chunfu Lin
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438 China
Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071 China
E-mails: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Renchao Che
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438 China
Zhejiang Laboratory, Hangzhou, 311100 China
E-mails: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Lithium-ion batteries (LIBs) are very popular electrochemical energy-storage devices. However, their applications in extreme environments are hindered because their low- and high-temperature electrochemical performance is currently unsatisfactory. In order to build all-climate LIBs, it is highly desirable to fully understand the underlying temperature effects on electrode materials. Here, based on a novel porous-microspherical yttrium niobate (Y0.5Nb24.5O62) model material, this work demonstrates that the operation temperature plays vital roles in electrolyte decomposition on electrode-material surfaces, electrochemical kinetics, and crystal-structure evolution. When the operation temperature increases, the reaction between the electrolyte and the electrode material become more intensive, causing the formation of thicker solid electrolyte interface (SEI) films, which decreases the initial Coulombic efficiency. Meanwhile, the electrochemical kinetics becomes faster, leading to the larger reversible capacity, higher rate capability, and more suitable working potential (i.e., lower working potential for anodes and higher working potential for cathodes). Additionally, the maximum unit-cell-volume change becomes larger, resulting in poorer cyclic stability. The insight gains here can provide a universal guide for the exploration of all-climate electrode materials and their modification methods.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303763-sup-0001-SuppMat.pdf2.4 MB | Supporting Information |
smll202303763-sup-0002-MovieS1.mp419.9 MB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) L. Wang, T. Liu, T. Wu, J. Lu, Nature 2022, 611, 61; b) C. Wang, T. Liu, X. Yang, S. Ge, N. Stanley, E. Rountree, Y. Leng, B. McCarthy, Nature 2022, 611, 485; c) T. Liu, J. Liu, L. Li, L. Yu, J. Diao, T. Zhou, S. Li, A. Dai, W. Zhao, S. Xu, Y. Ren, L. Wang, T. Wu, R. Qi, Y. Xiao, J. Zheng, W. Cha, R. Harder, I. Robinson, J. Wen, J. Lu, F. Pan, K. Amine, Nature 2022, 606, 305; d) W. Zhang, D. Seo, T. Chen, L. Wu, M. Topsakai, Y. Zhu, D. Lu, G. Ceder, F. Wang, Science 2020, 367, 1030; e) K. J. Griffith, K. Wiaderek, G. Cibin, L. Marbella, C. P. Grey, Nature 2018, 559, 556.
- 2a) Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao, H. Li, K. Zhang, J. Chen, Energy Environ. Sci. 2022, 15, 1711; b) J. Hou, M. Yang, D. Wang, J. Zhang, Adv. Energy Mater. 2020, 10, 1904152.
- 3a) A. Hu, F. Li, W. Chen, T. Lei, Y. Li, Y. Fan, M. He, F. Wang, M. Zhou, Y. Hu, Y. Yan, B. Chen, J. Zhu, J. Long, X. Wang, J. Xiong, Adv. Energy Mater. 2022, 12, 2202432; b) J. Li, S. Li, Y. Zhang, Y. Yang, S. Russi, G. Qian, L. Mu, S. J. Lee, Z. Yang, J. S. Lee, P. Pianetta, J. Qiu, D. Ratner, P. Cloetens, K. Zhao, F. Lin, Y. Liu, Adv. Energy Mater. 2021, 11, 2102122; c) X. Lin, M. Salari, L. Arava, P. Ajayanc, M. Grinstaff, Chem. Soc. Rev. 2016, 45, 5848.
- 4a) X. Lin, G. Zhou, J. Liu, J. Yu, M. B. Effat, J. Wu, F. Ciucci, Adv. Energy Mater. 2020, 10, 2001235; b) D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao, Z. Zhang, H. Dou, G. Wen, L. Shui, A. Yu, X. Wang, Z. Chen, Adv. Sci. 2021, 8, 2101051.
- 5a) N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen, C. Wang, X. Fan, Adv. Mater. 2022, 34, 2107899; b) M. Chen, Y. Zhang, G. Xing, S. Chou, Y. Tang, Energy Environ. Sci. 2021, 14, 3323; c) M. Liao, X. Ji, Y. Cao, J. Xu, X. Qiu, Y. Xie, F. Wang, C. Wang, Y. Xia, Nat. Commun. 2022, 13, 6064; d) J. Holoubek, K. Kim, Y. Yin, Z. Wu, H. Liu, M. Li, A. Chen, H. Gao, G. Cai, T. Pascal, P. Liu, Z. Chen, Energy Environ. Sci. 2022, 15, 1647.
- 6a) W. Cai, Y. Yao, G. Zhu, C. Yan, L. Jiang, C. He, J. Huang, Q. Zhang, Chem. Soc. Rev. 2020, 49, 3806; b) Z. Zhou, G. Li, J. Zhang, Y. Zhao, Adv. Funct. Mater. 2021, 31, 2107136; c) A. Gupta, A. Manthiram, Adv. Energy Mater. 2020, 10, 2001972.
- 7C. Lv, C. Lin, X. Zhao, Adv. Energy Mater. 2022, 12, 2102550.
- 8E. Pohjalainen, T. Rauhala, M. Valkeapa, J. Kallioinen, T. Kallio, J. Phys. Chem. C 2015, 119, 2277.
- 9F. Huang, J. Ma, H. Xia, Y. Huang, L. Zhao, S. Su, F. Kang, Y. He, ACS Appl. Mater. Interfaces 2019, 11, 37357.
- 10Q. Fu, R. Li, X. Zhu, G. Liang, L. Luo, Y. Chen, C. Lin, X. Zhao, J. Mater. Chem. A 2019, 7, 19862.
- 11a) J. Han, Y. Huang, J. B. Goodenough, Chem. Mater. 2011, 23, 2027; b) X. Wu, J. Miao, W. Han, Y. Hu, D. Chen, J. Lee, J. Kim, L. Chen, Electrochem. Commun. 2012, 25, 39; c) C. Yang, S. Deng, C. Lin, S. Lin, Y. Chen, J. Lia, H. Wu, Nanoscale 2016, 8, 18792.
- 12a) T. Jiang, S. Ma, J. Deng, T. Yuan, C. Lin, M. Liu, Adv. Sci. 2022, 9, 2105119; b) L. Yang, X. Zhu, X. Li, X. Zhao, K. Pei, W. You, X. Li, Y. Chen, C. Lin, R. Che, Adv. Energy Mater. 2019, 9, 1902174.
- 13S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. M. Tarascon, J. Electrochem. Soc. 2002, 149, A627.
- 14X. Zhu, J. Xu, Y. Luo, Q. Fu, G. Liang, L. Luo, Y. Chen, C. Lin, X. Zhao, J. Mater. Chem. A 2019, 7, 6522.
- 15S. Li, J. Gao, Y. Ou, W. Wang, Q. Zhan, S. Gao, X. Liu, C. Lin, J. Mater. Chem. A 2022, 10, 19953.
- 16Y. Zhang, J. Huang, N. Saito, X. Yang, Z. Zhang, L.i Yang, S. Hirano, Adv. Energy Mater. 2022, 12, 2200922.
- 17W. Wang, Q. Zhang, T. Jiang, S. Li, J. Gao, X. Liu, C. Lin, Adv. Energy Mater. 2022, 12, 2200656.
- 18V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 19X. Dong, Y. Yang, B. Wang, Y. Cao, N. Wang, P. Li, Y. Wang, Y. Xia, Adv. Sci. 2020, 7, 2000196.
- 20A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York 2001.
- 21Y. Yang, H. Zhu, F. Yang, F. Yang, D. Chen, Z. Wen, D. Wu, M. Ye, Y. Zhang, J. Zhao, Q. Liu, X. Lu, M. Gu, C. Li, W. He, Nano Lett. 2021, 21, 9675.
- 22J. Deng, C. Lv, T. Jiang, S. Ma, X. Liu, C. Lin, Adv. Sci. 2022, 9, 2106003.
- 23B. H. Toby, J. Appl. Crystallogr. 2001, 34, 210.
- 24S. Ma, T. Jiang, J. Deng, Q. Zhang, Y. Ou, X. Liu, C. Lin, K. Wang, X. Zhao, Energy Storage Mater. 2022, 46, 366.
- 25W. Huang, C. Yang, N. Miao, C. Lin, W. Xu, A. Marceli, W. Huang, Scr. Mater. 2022, 211, 114529.
- 26a) Y. Zhang, J. Liu, H. Wang, Sci. China Technol. Sci. 2019, 62, 546; b) Q. Zhang, S. Ma, W. Wang, S. Gao, Y. Ou, S. Li, X. Liu, C. Lin, Energy Storage Mater. 2022, 52, 637.