The In Situ Optimization of Spinterface in Polymer Spin Valve by Electronic Phase Separated Oxides
Cheng Zhang
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Shuaishuai Ding
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYuan Tian
School of Physics & Electronics, Hunan University, Hunan, 410082 China
Search for more papers by this authorJing Wang
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYunzhong Chen
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTongyun Zhao
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Fengxia Hu
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorCorresponding Author
Baogen Shen
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCheng Zhang
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Shuaishuai Ding
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYuan Tian
School of Physics & Electronics, Hunan University, Hunan, 410082 China
Search for more papers by this authorJing Wang
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYunzhong Chen
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTongyun Zhao
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Fengxia Hu
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorCorresponding Author
Baogen Shen
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Tailoring the interface between organic semiconductor (OSC) and ferromagnetic (FM) electrodes, that is, the spinterface, offers a promising way to manipulate and optimize the magnetoresistance (MR) ratio of the organic spin valve (OSV) devices. However, the non-destructive in situ regulation method of spinterface is seldom reported, limiting its theoretical research and further application in organic spintronics. (La2/3Pr1/3)5/8Ca3/8MnO3 (LPCMO), a recently developed FM material, exhibits a strong electronic phase separation (EPS) property, and can be employed as an effective in situ spinterface adjuster. Herein, we fabricated a LPCMO-based polymer spin valve with a vertical configuration of LPCMO/poly(3-hexylthiophene-2,5-diyl) (P3HT)/Co, and emphasized the important role of LPCMO/P3HT spinterface in MR regulation. A unique competitive spin-scattering mechanism generated by the EPS characteristics of LPCMO inside the polymer spin valve was discovered by abstracting the anomalous non-monotonic MR value as a function of pre-set magnetic field (Bpre) and temperature (T). Particularly, a record-high MR ratio of 93% was achieved in polymer spin valves under optimal conditions. These findings highlight the importance of interdisciplinary research between organic spintronics and EPS oxides and offer a novel scenario for multi-level storage via spinterface manipulation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303375-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 1989, 39, 4828.
- 2I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 2004, 76, 323.
- 3L. E. Hueso, J. M. Pruneda, V. Ferrari, G. Burnell, J. P. Valdés-Herrera, B. D. Simons, P. B. Littlewood, E. Artacho, A. Fert, N. D. Mathur, Nature 2007, 445, 410.
- 4V. A. Dediu, L. E. Hueso, I. Bergenti, C. Taliani, Nat. Mater. 2009, 8, 707.
- 5A. J. Drew, J. Hoppler, L. Schulz, F. L. Pratt, P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, A. Suter, N. A. Morley, V. K. Malik, A. Dubroka, K. W. Kim, H. Bouyanfif, F. Bourqui, C. Bernhard, R. Scheuermann, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni, Nat. Mater. 2009, 8, 109.
- 6D. Sun, E. Ehrenfreund, Z. Valy Vardeny, ChemComm 2014, 50, 1781.
- 7A. Privitera, M. Righetto, F. Cacialli, M. K. Riede, Adv. Opt. Mater. 2021, 9, 2100215.
- 8Z. Ni, H. Wang, H. Dong, Y. Dang, Q. Zhao, X. Zhang, W. Hu, Nat. Chem. 2019, 11, 271.
- 9S. Duan, X. Gao, Y. Wang, F. Yang, M. Chen, X. Zhang, X. Ren, W. Hu, Adv. Mater. 2019, 31, 1807975.
- 10K. Nakano, Y. Kaji, K. Tajima, Small 2022, 2205570.
- 11G. Pan, L. Hu, S. Su, J. Yuan, T. Li, X. Xiao, Q. Chen, F. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 29487.
- 12G. Szulczewski, S. Sanvito, M. Coey, Nat. Mater. 2009, 8, 693.
- 13X. Sun, A. Bedoya-Pinto, R. Llopis, F. Casanova, L. E. Hueso, Appl. Phys. Lett. 2014, 105, 083302.
- 14S. Sanvito, Nat. Mater. 2007, 6, 803.
- 15A. Banerjee, A. J. Pal, Small 2018, 14, 1801510.
- 16M. Wei, X. Lu, J. Qiao, S. Ren, X.-T. Hao, W. Qin, ACS Nano 2022, 16, 13049.
- 17Z. Shang, T. Liu, Q. Yang, S. Cui, K. Xu, Y. Zhang, J. Z. Deng, T. X. Wang, Small 2022, 18, 2203015.
- 18Z. H. Xiong, D. Wu, Z. Valy Vardeny, J. Shi, Nature 2004, 427, 821.
- 19X. Sun, S. Vélez, A. Atxabal, A. Bedoya-Pinto, S. Parui, X. Zhu, R. Llopis, F. Casanova, L. E. Hueso, Science 2017, 357, 677.
- 20L. Guo, X. Gu, X. Zhu, X. Sun, Adv. Mater. 2019, 31, 1805355.
- 21S. Sanvito, Nat. Phys. 2010, 6, 562.
- 22M. Galbiati, S. Tatay, C. Barraud, A. V. Dediu, F. Petroff, R. Mattana, P. Seneor, MRS Bull. 2014, 39, 602.
- 23D. Sun, M. Fang, X. Xu, L. Jiang, H. Guo, Y. Wang, W. Yang, L. Yin, P. C. Snijders, T. Z. Ward, Z. Gai, X. G. Zhang, H. N. Lee, J. Shen, Nat. Commun. 2014, 5, 4396.
- 24D. Yu, S. Ding, J. Li, W. Mi, Y. Tian, W. Hu, J. Mater. Chem. C 2022, 10, 2608.
- 25S. Liang, H. Yang, H. Yang, B. Tao, A. Djeffal, M. Chshiev, W. Huang, X. Li, A. Ferri, R. Desfeux, S. Mangin, D. Lacour, M. Hehn, O. Copie, K. Dumesnil, Y. Lu, Adv. Mater. 2016, 28, 10204.
- 26D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, J. Shen, Phys. Rev. Lett. 2010, 104, 236602.
- 27X. Sun, A. Bedoya-Pinto, Z. Mao, M. Gobbi, W. Yan, Y. Guo, A. Atxabal, R. Llopis, G. Yu, Y. Liu, A. Chuvilin, F. Casanova, L. E. Hueso, Adv. Mater. 2016, 28, 2609.
- 28J. Devkota, R. Geng, R. C. Subedi, T. D. Nguyen, Adv. Funct. Mater. 2016, 26, 3881.
- 29X. Chen, W. Mi, J. Mater. Chem. C 2021, 9, 9400.
- 30S. Ding, Y. Tian, W. Hu, Nano Res. 2021, 14, 3653.
- 31D. Li, G. Yu, Adv. Funct. Mater. 2021, 31, 2100550.
- 32H.-Y. Zhai, J. X. Ma, D. T. Gillaspie, X. G. Zhang, T. Z. Ward, E. W. Plummer, J. Shen, Phys. Rev. Lett. 2006, 97, 167201.
- 33T. Z. Ward, S. Liang, K. Fuchigami, L. F. Yin, E. Dagotto, E. W. Plummer, J. Shen, Phys. Rev. Lett. 2008, 100, 247204.
- 34L. Zhang, C. Israel, A. Biswas, R. L. Greene, A. de Lozanne, Science 2002, 298, 805.
- 35M. Uehara, S. Mori, C. H. Chen, S. W. Cheong, Nature 1999, 399, 560.
- 36W. Yang, Q. Shi, T. Miao, Q. Li, P. Cai, H. Liu, H. Lin, Y. Bai, Y. Zhu, Y. Yu, L. Deng, W. Wang, L. Yin, D. Sun, X. G. Zhang, J. Shen, Nat. Commun. 2019, 10, 3877.
- 37H. Lin, H. Liu, L. Lin, S. Dong, H. Chen, Y. Bai, T. Miao, Y. Yu, W. Yu, J. Tang, Y. Zhu, Y. Kou, J. Niu, Z. Cheng, J. Xiao, W. Wang, E. Dagotto, L. Yin, J. Shen, Phys. Rev. Lett. 2018, 120, 267202.
- 38T. Miao, L. Deng, W. Yang, J. Ni, C. Zheng, J. Etheridge, S. Wang, H. Liu, H. Lin, Y. Yu, Q. Shi, P. Cai, Y. Zhu, T. Yang, X. Zhang, X. Gao, C. Xi, M. Tian, X. Wu, H. Xiang, E. Dagotto, L. Yin, J. Shen, Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 7090.
- 39F. Lan, H. Chen, H. Lin, Y. Bai, Y. Yu, T. Miao, Y. Zhu, T. Z. Ward, Z. Gai, W. Wang, L. Yin, E. W. Plummer, J. Shen, Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 4141.
- 40S. Ding, Y. Tian, H. Wang, Z. Zhou, W. Mi, Z. Ni, Y. Zou, H. Dong, H. Gao, D. Zhu, W. Hu, ACS Nano 2018, 12, 12657.
- 41S. Watanabe, K. Ando, K. Kang, S. Mooser, Y. Vaynzof, H. Kurebayashi, E. Saitoh, H. Sirringhaus, Nat. Phys. 2014, 10, 308.
- 42T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, J. S. Moodera, Phys. Rev. Lett. 2007, 98, 016601.
- 43W. Xu, G. J. Szulczewski, P. LeClair, I. Navarrete, R. Schad, G. Miao, H. Guo, A. Gupta, Appl. Phys. Lett. 2007, 90, 072506,.
- 44D. Dhandapani, A. Rao, N. A. Morley, A. Das, M. Grell, M. R. J. Gibbs, J. Appl. Phys. 2009, 105, 07C702.
10.1063/1.3056409 Google Scholar
- 45T. D. Nguyen, G. Hukic-Markosian, F. Wang, L. Wojcik, X.-G. Li, E. Ehrenfreund, Z. V. Vardeny, Nat. Mater. 2010, 9, 345.
- 46R. Geng, A. Roy, W. Zhao, R. C. Subedi, X. Li, J. Locklin, T. D. Nguyen, Adv. Funct. Mater. 2016, 26, 3999.
- 47S. Ding, Y. Tian, Y. Li, W. Mi, H. Dong, X. Zhang, W. Hu, D. Zhu, ACS Appl. Mater. Interfaces 2017, 9, 15644.
- 48R. Geng, R. C. Subedi, H. M. Luong, M. T. Pham, W. Huang, X. Li, K. Hong, M. Shao, K. Xiao, L. A. Hornak, T. D. Nguyen, Phys. Rev. Lett. 2018, 120, 086602.
- 49S. Ding, Y. Tian, H. Dong, D. Zhu, W. Hu, ACS Appl. Mater. Interfaces 2019, 11, 11654.
- 50D. Li, X. Wang, Z. Lin, Y. Zheng, Q. Jiang, N. Zheng, W. Zhang, K.-j. Jin, G. Yu, ACS Appl. Mater. Interfaces 2019, 11, 30089.
- 51Y. Zheng, Y. Feng, D. Gao, N. Zheng, D. Li, L. Jiang, X. Wang, K. Jin, G. Yu, Adv. Electron. Mater. 2019, 5, 1970065.
10.1002/aelm.201970065 Google Scholar
- 52N. Zheng, X. Wang, Y. Zheng, D. Li, Z. Lin, W. Zhang, K.-j. Jin, G. Yu, Adv. Mater. Interfaces 2020, 7, 2000868.
- 53S. Ding, Y. Tian, X. Liu, Y. Zou, H. Dong, W. Mi, W. Hu, Nano Res. 2021, 14, 304.
- 54N. Zheng, Z. Lin, Y. Zheng, D. Li, J. Yang, W. Zhang, L. Wang, G. Yu, Org. Electron. 2020, 81, 105684.
- 55A. Fert, H. Jaffrès, Phys. Rev. B 2001, 64, 184420.
- 56T. Taniyama, E. Wada, M. Itoh, M. Yamaguchi, NPG Asia Mater. 2011, 3, 65.
- 57E. I. Rashba, Phys. Rev. B 2000, 62, R16267.