A Newly Crosslinked-double Network PEDOT:PSS@PEGDMA toward Highly-Efficient and Stable Tin-Lead Perovskite Solar Cells
Tengfei Kong
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJing Song
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorYang Zhang
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorEng Liang Lim
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorXufu Liu
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorWolfgang Tress
ZHAW School of Engineering, Forschungsschwerpunkt Organic Electronics & Photovoltaics, Technikumstrasse 71, Winterthur, 8400 Switzerland
Search for more papers by this authorCorresponding Author
Dongqin Bi
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected]
Search for more papers by this authorTengfei Kong
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJing Song
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorYang Zhang
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorEng Liang Lim
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorXufu Liu
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorWolfgang Tress
ZHAW School of Engineering, Forschungsschwerpunkt Organic Electronics & Photovoltaics, Technikumstrasse 71, Winterthur, 8400 Switzerland
Search for more papers by this authorCorresponding Author
Dongqin Bi
School of Materials Science and Engineering, State key laboratory of optoelectronic materials and technology, Guangdong Provincial Key Laboratory of low carbon chemistry and process energy conservation, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Until now, poly(3,4-ethylenedioxythiophene):poly(styrensulfonate) (PEDOT:PSS) is widely used in Sn–Pb perovskite solar cells (PSCs) due to its many advantages, including high optical transparency, suitable conductivity, superior wettability, and so on. However, the acidic and hydroscopic properties of the PSS component, as well as the incongruous energy level of the hole transport layer (HTL), may lead to unsatisfying interface properties and decreased device performance. Herein, by adding polyethylene glycol dimethacrylate (PEGDMA) into PEDOT:PSS, a newly crosslinked-double-network obtain of PEDOT:PSS@PEGDMA film, which could not only optimize nucleation and crystallinity of Sn–Pb perovskite films, but also suppress defect density and optimize energy level alignment at the HTL/perovskite interface. As a result, the achieves highly efficient and stable mixed Sn–Pb PSCs with an encouraging power conversion efficiency of 20.9%. Additionally, the device can maintain good stability under N2 atmosphere.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303159-sup-0001-SuppMat.pdf487.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed: June 2023).
- 2J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Science 2017, 358, 739.
- 3J. Tong, Q. Jiang, A. J. Ferguson, A. F. Palmstrom, X. Wang, J. Hao, S. P. Dunfield, A. E. Louks, S. P. Harvey, C. Li, H. Lu, R. M. France, S. A. Johnson, F. Zhang, M. Yang, J. F. Geisz, M. D. McGehee, M. C. Beard, Y. Yan, D. Kuciauskas, J. J. Berry, K. Zhu, Nat. Energy 2022, 7, 642.
- 4R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. Xiao, B. Chen, S. M. Park, G. Chen, H. R. Atapattu, K. R. Graham, J. Xu, J. Zhu, L. Li, C. Zhang, E. H. Sargent, H. Tan, Nature 2022, 603, 73.
- 5S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M. A. Truong, T. Yamada, T. Handa, K. Matsuda, K. Nakano, A. Sato, K. Marumoto, K. Tajima, Y. Kanemitsu, A. Wakamiya, Energy Environ. Sci. 2022, 15, 2096.
- 6J. Cao, H.-L. Loi, Y. Xu, X. Guo, N. Wang, C.-k. Liu, T. Wang, H. Cheng, Y. Zhu, M. G. Li, W.-Y. Wong, F. Yan, Adv. Mater. 2021, 34, 2107729.
- 7C. Peng, C. Li, M. Zhu, C. Zhang, X. Jiang, B. He, H. Li, M. Li, S. K. So, H. Yin, Z. Zhou, Angew. Chem., Int. Ed. 2022, 61, 202201209.
- 8T. Yokoyama, D. H. Cao, C. C. Stoumpos, T.-B. Song, Y. Sato, S. Aramaki, M. G. Kanatzidis, J. Phys. Chem. Lett. 2016, 7, 776.
- 9M. I. Saidaminov, I. Spanopoulos, J. Abed, W. Ke, J. Wicks, M. G. Kanatzidis, E. H. Sargent, ACS Energy Lett. 2020, 5, 1153.
- 10J. Werner, T. Moot, T. A. Gosset, I. E. Gould, A. F. Palmstrom, E. J. Wolf, C. C. Boyd, M. F. A. M. van Hest, J. M. Luther, J. J. Berry, M. D. McGehee, ACS Energy Lett. 2020, 5, 1215.
- 11G. Kapil, T. Bessho, T. Maekawa, A. K. Baranwal, Y. Zhang, M. A. Kamarudin, D. Hirotani, Q. Shen, H. Segawa, S. Hayase, Adv. Energy Mater. 2021, 11, 2101069.
- 12G. Kapil, T. Bessho, C. H. Ng, K. Hamada, M. Pandey, M. A. Kamarudin, D. Hirotani, T. Kinoshita, T. Minemoto, Q. Shen, T. Toyoda, T. N. Murakami, H. Segawa, S. Hayase, ACS Energy Lett. 2019, 4, 1991.
- 13R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2019, 4, 864.
- 14N. Yan, X. Ren, Z. Fang, X. Jiang, Z. Xu, L. Zhang, S. Ren, L. Jia, J. Zhang, Y. Du, D. Zhao, K. Zhao, S. Yang, S. Liu, Adv. Funct. Mater. 2022, 32, 2201384.
- 15Z. Zhang, J. Liang, Y. Zheng, X. Wu, J. Wang, Y. Huang, Y. Yang, Z. Zhou, L. Wang, L. Kong, K. M. Reddy, C. Qin, C.-C. Chen, J. Mater. Chem. A 2021, 9, 17830.
- 16H. Tang, Y. Shang, W. Zhou, Z. Peng, Z. Ning, Sol. RRL 2019, 3, 1800256.
- 17S. Shao, Y. Cui, H. Duim, X. Qiu, J. Dong, G. H. ten Brink, G. Portale, R. C. Chiechi, S. Zhang, J. Hou, M. A. Loi, Adv. Mater. 2018, 30, 1803703.
- 18A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A. B. Morales Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matič, B. Rech, R. Schlatmann, M. Topič, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Science 2020, 370, 1300.
- 19E. Yalcin, M. Can, C. Rodriguez-Seco, E. Aktas, R. Pudi, W. Cambarau, S. Demic, E. Palomares, Environ Sci 2019, 12, 230.
- 20Y. Li, B. Ding, Q.-Q. Chu, G.-J. Yang, M. Wang, C.-X. Li, C.-J. Li, Sci. Rep. 2017, 7, 46141.
- 21J.-Y. Shao, B. Yu, Y.-D. Wang, Z.-R. Lan, D. Li, Q. Meng, Y.-W. Zhong, ACS Appl. Energy Mater. 2020, 3, 5058.
- 22M. A. Mahmud, J. Zheng, T. Shi, C. Liao, G. Wang, J. Bing, T. L. Leung, A. D. Bui, H. Chen, J. Yi, S. P. Bremner, H. T. Nguyen, A. W. Y. Ho-Baillie, ACS Energy Lett. 2023, 8, 21.
- 23C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747.
- 24J. Lee, H. Kang, G. Kim, H. Back, J. Kim, S. Hong, B. Park, E. Lee, K. Lee, Adv. Mater. 2017, 29, 1606363.
- 25Y. Zhang, Y. Han, X. Liu, T. Kong, J. Song, H. Xie, D. Bi, Sol. RRL 2023, 7, 2200806.
- 26Y. Wang, W. Fu, J. Yan, J. Chen, W. Yang, H. Chen, J. Mater. Chem. A 2018, 6, 13090.
- 27Y. Qi, M. Almtiri, H. Giri, S. Jha, G. Ma, A. K. Shaik, Q. Zhang, N. Pradhan, X. Gu, N. I. Hammer, D. Patton, C. Scott, Q. Dai, Adv. Energy Mater. 2022, 12, 2202713.
- 28G. Kapil, T. Bessho, Y. Sanehira, S. R. Sahamir, M. Chen, A. K. Baranwal, D. Liu, Y. Sono, D. Hirotani, D. Nomura, K. Nishimura, M. A. Kamarudin, Q. Shen, H. Segawa, S. Hayase, ACS Energy Lett. 2022, 7, 966.
- 29G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang, H. Chen, W. Chen, X. Hao, Y. Li, Y. Li, Adv. Funct. Mater. 2018, 28, 1804427.
- 30X. Liu, Y. Wang, F. Xie, X. Yang, L. Han, ACS Energy Lett. 2018, 3, 1116.
- 31P. Guo, J. Dong, C. Xu, Y. Yao, J. You, H. Bian, W. Zeng, G. Zhou, X. He, M. Wang, X. Zhou, M. Wang, Q. Song, J. Mater. Chem. A 2023, 11, 7246.
- 32R. Zhang, H. Ling, X. Lu, J. Xia, Sol. Energy 2019, 186, 398.
- 33Y.-Q. Zheng, Y. Liu, D. Zhong, S. Nikzad, S. Liu, Z. Yu, D. Liu, H.-C. Wu, C. Zhu, J. Li, H. Tran, B. H. T. Jeffrey, Z. Bao, Science 2021, 373, 88.
- 34Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, H. Bian, T. Wang, K. Guo, M. Cai, S. Dai, Z. Liu, S. Liu, Adv. Funct. Mater. 2021, 31, 2005776.
- 35D. Xu, R. Mai, Y. Jiang, C. Chen, R. Wang, Z. Xu, K. Kepma, G. Zhou, J. Liu, J. Gao, Environ Sci 2022, 15, 3891.
- 36X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, Z. Ning, Nat. Commun. 2020, 11, 1245.
- 37L. Hu, M. Li, K. Yang, Z. Xiong, B. Yang, M. Wang, X. Tang, Z. Zang, X. Liu, B. Li, Z. Xiao, S. Lu, H. Gong, J. Ouyang, K. Sun, J. Mater. Chem. A 2018, 6, 16583.
- 38E. Aktas, N. Phung, H. Köbler, D. A. González, M. Méndez, I. Kafedjiska, S.-H. Turren-Cruz, R. Wenisch, I. Lauermann, A. Abate, E. Palomares, Energy Environ. Sci. 2021, 14, 3976.
- 39Y. You, W. Tian, M. Wang, F. Cao, H. Sun, L. Li, Adv. Mater. Interfaces 2020, 7, 2000537.
- 40J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J. E. Shield, J. Huang, Sci. Adv. 2017, 3, eaao5616.
- 41D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A. H. Proppe, Y. Dong, M. I. Saidaminov, S. O. Kelley, J.-S. Hu, E. H. Sargent, Nat. Commun. 2020, 11, 1514.
- 42J. Tong, J. Gong, M. Hu, S. K. Yadavalli, Z. Dai, F. Zhang, C. Xiao, J. Hao, M. Yang, M. A. Anderson, E. L. Ratcliff, J. J. Berry, N. P. Padture, Y. Zhou, K. Zhu, Matter 2021, 4, 1365.
- 43N. Yang, C. Zhu, Y. Chen, H. Zai, C. Wang, X. Wang, H. Wang, S. Ma, Z. Gao, X. Wang, J. Hong, Y. Bai, H. Zhou, B.-B. Cui, Q. Chen, Energy Environ. Sci. 2020, 13, 4344.
- 44Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P. K. Madhu, A. B. Morales-Vilches, P. K. Nayak, S. Bai, F. Gao, C. R. M. Grovenor, M. B. Johnston, J. G. Labram, J. R. Durrant, J. M. Ball, B. Wenger, B. Stannowski, H. J. Snaith, Science 2020, 369, 96.
- 45J. Wang, Z. Yu, D. D. Astridge, Z. Ni, L. Zhao, B. Chen, M. Wang, Y. Zhou, G. Yang, X. Dai, A. Sellinger, J. Huang, ACS Energy Lett. 2022, 7, 3353.
- 46C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M. M. Junda, C. Wang, C.-S. Jiang, M. Al-Jassim, R. J. Ellingson, N. J. Podraza, K. Zhu, Y. Yan, Adv. Energy Mater. 2019, 9, 1803135.
- 47T. Kong, H. Xie, Y. Zhang, J. Song, Y. Li, E. L. Lim, A. Hagfeldt, D. Bi, Adv. Energy Mater. 2021, 11, 2101018.
- 48G. Li, J. Song, J. Wu, Z. Song, X. Wang, W. Sun, L. Fan, J. Lin, M. Huang, Z. Lan, P. Gao, ACS Energy Lett. 2021, 6, 3614.