Electrochemical Oxidation to Fabricate Micro-Nano-Scale Surface Wrinkling of Liquid Metals
Zhuquan Zhou
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorZerong Xing
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Qian Wang
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Liu
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhuquan Zhou
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorZerong Xing
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Qian Wang
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Liu
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Constructing wrinkled structures on the surface of materials to obtain new functions has broad application prospects. Here a generalized method is reported to fabricate multi-scale and diverse-dimensional oxide wrinkles on liquid metal surfaces by an electrochemical anodization method. The oxide film on the surface of the liquid metal is successfully thickened to hundreds of nanometers by electrochemical anodization, and then the micro-wrinkles with height differences of several hundred nanometers are obtained by the growth stress. It is succeeded in altering the distribution of growth stress by changing the substrate geometry to induce different wrinkle morphologies, such as one-dimensional striped wrinkles and two-dimensional labyrinth wrinkles. Further, radial wrinkles are obtained under the hoop stress induced by the difference in surface tensions. These hierarchical wrinkles of different scales can exist on the liquid metal surface simultaneously. Surface wrinkles of liquid metal may have potential applications in the future for flexible electronics, sensors, displays, and so on.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202207327-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
smll202207327-sup-0002-MovieS1.mp45.2 MB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. He, X. Ye, T. Cui, Microsyst Nanoeng 2021, 7, 88.
- 2A. Chen, D. K. Lieu, L. Freschauf, V. Lew, H. Sharma, J. Wang, D. Nguyen, I. Karakikes, R. J. Hajjar, A. Gopinathan, E. Botvinick, C. C. Fowlkes, R. A. Li, M. Khine, Adv. Mater. 2011, 23, 5785.
- 3a) D.-Y. Khang, H. Jiang, Y. Huang, A. R. John, Science 2006, 311, 208; b) W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, J. A. Rogers, Nano Lett. 2007, 7, 1655.
- 4a) C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H.-C. Kim, W. Volksen, R. D. Miller, E. E. Simonyi, Nat. Mater. 2004, 3, 545; b) J. Y. Chung, A. J. Nolte, C. M. Stafford, Adv. Mater. 2011, 23, 349.
- 5a) H. Hou, K. Hu, H. Lin, J. Forth, W. Zhang, T. P. Russell, J. Yin, X. Jiang, Adv. Mater. 2018, 30, 1803463; b) K. Wu, Y. Sun, H. Yuan, J. Zhang, G. Liu, J. Sun, Nano Lett. 2020, 20, 4129.
- 6a) R. C. Adams-McGavin, Y. Chan, C. M. Gabardo, J. Yang, M. Skreta, B. C. Fung, L. Soleymani, Electrochim. Acta 2017, 242, 1; b) G. Lee, M. Zarei, Q. Wei, Y. Zhu, S. G. Lee, Small 2022, 18, 2203491.
- 7K. S. Kwok, Y. Wang, M. C. Cao, H. Shen, Z. He, G. Poirier, B. E. McCandless, K. J. Livi, D. A. Muller, C. Wang, D. H. Gracias, Nano Lett. 2019, 19, 9154.
- 8a) Y. Tan, B. Hu, J. Song, Z. Chu, W. Wu, Nano-Micro Lett. 2020, 12, 101; b) X. Yang, Y. Zhao, J. Xie, X. Han, J. Wang, C. Zong, H. Ji, J. Zhao, S. Jiang, Y. Cao, C. Lu, ACS Nano 2016, 10, 3801.
- 9H. Yuan, K. Wu, J. Zhang, Y. Wang, G. Liu, J. Sun, Adv. Mater. 2019, 31, 1900933.
- 10a) L. Zhou, K. Hu, W. Zhang, G. Meng, J. Yin, X. Jiang, Natl Sci Rev 2020, 7, 1247; b) X. Gao, J. Li, T. Li, Z. Su, X. Ma, J. Yin, X. Jiang, Adv. Funct. Mater. 2021, 31, 2106754.
- 11H. S. Kim, A. J. Crosby, Adv. Mater. 2011, 23, 4188.
- 12J. Rodríguez-Hernández, Prog. Polym. Sci. 2015, 42, 1.
- 13a) D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, Z. Bao, Adv. Mater. 2011, 23, 1771; b) J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603.
- 14a) S. Hiltl, M.-P. Schürings, A. Balaceanu, V. Mayorga, C. Liedel, A. Pich, A. Böker, Soft Matter 2011, 7, 8231; b) M. Müller, M. Karg, A. Fortini, T. Hellweg, A. Fery, Nanoscale 2012, 4, 2491; c) C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. F. König, A. Fery, Nano Lett. 2014, 14, 6863; d) X. Han, J. Hou, J. Xie, J. Yin, Y. Tong, C. Lu, H. Möhwald, ACS Appl. Mater. Interfaces 2016, 8, 16404.
- 15a) S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, K. Cho, Adv. Mater. 2010, 22, 5013; b) J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, X. Zhao, Nat. Mater. 2013, 12, 321.
- 16a) X. Sun, X. Wang, B. Yuan, J. Liu, Mater Today Phys 2020, 14; b) L. Ren, X. Xu, Y. Du, K. Kalantar-Zadeh, S. X. Dou, Mater. Today 2020, 34, 92.
- 17a) X. Sun, B. Yuan, L. Sheng, W. Rao, J. Liu, Appl. Mater. Today 2020, 20; b) R. Dong, L. Wang, C. Hang, Z. Chen, X. Liu, L. Zhong, J. Qi, Y. Huang, S. Liu, L. Wang, Y. Lu, X. Jiang, Small 2021, 17, 2006612.
- 18a) A. Zavabeti, J. Z. Ou, B. J. Carey, N. Syed, R. Orrell-Trigg, E. L. H. Mayes, C. Xu, O. Kavehei, A. P. O'Mullane, R. B. Kaner, K. Kalantar-zadeh, T. Daeneke, Science 2017, 358, 332; b) A. Zavabeti, B. Y. Zhang, I. A. de Castro, J. Z. Ou, B. J. Carey, M. Mohiuddin, R. Datta, C. Xu, A. P. Mouritz, C. F. McConville, A. P. O'Mullane, T. Daeneke, K. Kalantar-Zadeh, Adv. Funct. Mater. 2018, 28, 1804057; c) J. Lin, Q. Li, T.-Y. Liu, Y. Cui, H. Zheng, J. Liu, Phys Status Solidi Rapid Res Lett 2019, 13, 1900271.
- 19a) K.-Q. Ma, J. Liu, J. Phys. D: Appl. Phys. 2007, 40, 4722; b) Y. Gao, J. Liu, Appl. Phys. A 2012, 107, 701; c) X.-H. Yang, J. Liu, Front. Energy 2017, 12, 259.
- 20a) S. Liu, X. Sun, N. Kemme, V. G. Damle, C. Schott, M. Herrmann, K. Rykaczewski, Microfluid Nanofluidics 2016, 20, 3; b) S. Handschuh-Wang, T. Gan, T. Wang, F. J. Stadler, X. Zhou, Langmuir 2021, 37, 9017.
- 21a) D. Wang, X. Wang, W. Rao, Acc Mater Res 2021, 2, 1093; b) J.-H. Fu, T.-Y. Liu, Y. Cui, J. Liu, Adv. Mater. Interfaces 2021, 8, 2001936.
- 22a) M. Yunusa, G. J. Amador, D.-M. Drotlef, M. Sitti, Nano Lett. 2018, 18, 2498; b) J. Lee, S. Jung, W. Kim, Extreme Mech Lett 2021, 48, 101386; c) C.-Y. Chen, C.-Y. Chien, C.-M. Wang, R.-S. Lin, I. C. Chen, Materials 2022, 15, 2145.
- 23a) W. Chen, X. Gui, L. Yang, H. Zhu, Z. Tang, Nanoscale Horiz. 2019, 4, 291; b) Q. H. Thi, L. W. Wong, H. Liu, C. S. Lee, J. Zhao, T. H. Ly, Nano Lett. 2020, 20, 8420; c) R. Zhang, Y. Lai, W. Chen, C. Teng, Y. Sun, L. Yang, J. Wang, B. Liu, H.-M. Cheng, ACS Nano 2022, 16, 6309.
- 24T. Lim, S. Won, M. Kim, M. A. Trout, J. Kim, J. A. George, H. Zhang, ACS Mater Lett 2022, 4, 2289.
- 25J. A. Howarter, C. M. Stafford, Soft Matter 2010, 6, 5661.
- 26Y. Hou, H. Chang, K. Song, C. Lu, P. Zhang, Y. Wang, Q. Wang, W. Rao, J. Liu, ACS Appl. Mater. Interfaces 2018, 10, 41627.
- 27P. Zhang, Y. Yu, B. Chen, W. Wang, S. Wei, W. Rao, Q. Wang, J. Mater. Chem. C 2020, 8, 8028.
- 28W. Lee, S.-J. Park, Chem. Rev. 2014, 114, 7487.
- 29a) F. N. Rhines, J. S. Wolf, Metall. Trans. 1970, 1, 1701; b) F. H. Stott, A. Atkinson, Mater. High Temp. 1994, 12, 195.
- 30D. R. Clarke, Acta Mater. 2003, 51, 1393.
- 31a) B. Pandey, P. S. Thapa, D. A. Higgins, T. Ito, Langmuir 2012, 28, 13705; b) N. K. Shrestha, H. T. Bui, T. Lee, Y.-Y. Noh, Langmuir 2018, 34, 4575.
- 32S. Yang, K. Khare, P.-C. Lin, Adv. Funct. Mater. 2010, 20, 2550.
- 33J. Tang, S. Lambie, N. Meftahi, A. J. Christofferson, J. Yang, M. B. Ghasemian, J. Han, F.-M. Allioux, M. A. Rahim, M. Mayyas, T. Daeneke, C. F. McConville, K. G. Steenbergen, R. B. Kaner, S. P. Russo, N. Gaston, K. Kalantar-Zadeh, Nat. Nanotechnol. 2021, 16, 431.
- 34a) M. Romand, M. Roubin, J.-P. Deloume, J. Solid State Chem. 1978, 25, 59; b) G. Cossu, G. M. Ingo, G. Mattogno, G. Padeletti, G. M. Proietti, Appl. Surf. Sci. 1992, 56–58, 81.
- 35P. A. Breeze, H. L. Hartnagel, P. M. A. Sherwood, J. Electrochem. Soc. 1980, 127, 454.
- 36H. Iwakuro, C. Tatsuyama, S. Ichimura, Jpn. J. Appl. Phys. 1982, 21, 94.
- 37S. Yu, Y. Sun, X. Zhang, C. Lu, H. Zhou, Y. Ni, Phys Rev E 2019, 99, 062802.
- 38S. Deng, V. Berry, ACS Appl. Mater. Interfaces 2016, 8, 24956.
- 39S.-J. Yu, H. Zhou, Y.-J. Zhang, M.-G. Chen, Z.-W. Jiao, P.-Z. Si, Thin Solid Films 2012, 520, 5683.
- 40H. Yusa, T. Tsuchiya, N. Sata, Y. Ohishi, Phys. Rev. B 2008, 77, 064107.
- 41Y. Zheng, Z.-Z. He, J. Yang, J. Liu, Sci. Rep. 2014, 4, 4588.
- 42M. Piñeirua, N. Tanaka, B. Roman, J. Bico, Soft Matter 2013, 9, 10985.
- 43L. Ma, L. He, Y. Ni, J. Appl. Phys. 2020, 127, 111101.
- 44Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao, N. Sun, F. Li, H.-Y. Zhang, J.-C. Han, Y. Yang, Nano Energy 2021, 81, 105663.
- 45K. Wu, T. Zhu, L. Zhu, Y. Sun, K. Chen, J. Chen, H. Yuan, Y. Wang, J. Zhang, G. Liu, X. Chen, J. Sun, Nano Lett. 2022, 22, 2261.