Gradient-Structured Ceramics with High Energy Storage Performance and Excellent Stability
Corresponding Author
Fei Yan
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126 P. R. China
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGuanglong Ge
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorJin Qian
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorJinfeng Lin
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorChukai Chen
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorCorresponding Author
Zhifu Liu
Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiwei Zhai
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Yan
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126 P. R. China
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGuanglong Ge
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorJin Qian
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorJinfeng Lin
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorChukai Chen
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorCorresponding Author
Zhifu Liu
Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiwei Zhai
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Owing to the high power density, eco-friendly, and outstanding stability, the lead-free ceramics have attracted great interest in the fields of pulsed power systems. Nevertheless, the low energy storage density of such ceramics is undoubtedly a severe problem in practical applications. To overcome this limitation, the lead-free ceramics with gradient structures are designed and fabricated using the tape-casting method herein. By optimizing the composition and distribution of the gradient-structured ceramics, the energy storage density, and efficiency can be improved simultaneously. Under a moderate electric field of 320 kV cm−1, the value of recoverable energy storage density (Wrec) is higher than 4 J cm−3, and the energy storage efficiency (η) is of ≥88% for 20-5-20 and 20-10-20. Furthermore, the gradient-structured ceramics of 20-10-0-10-20 and 20-15-0-15-20 possess high applied electric field, large maximum polarization, and small remnant polarization, which give rise to ultrahigh Wrec and η on the order of ≈6.5 J cm−3 and 89–90%, respectively. In addition, the energy storage density and efficiency also exhibit excellent stability over a broad range of frequencies, temperatures, and cycling numbers. This work provides an effective strategy for improving the energy storage capability of eco-friendly ceramics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202206125-sup-0001-SuppMat.pdf907.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L. Q. Chen, Y. H. Lin, C. W. Nan, Science 2019, 365, 578.
- 2L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J. F. Li, S. Zhang, Prog. Mater. Sci. 2019, 102, 72.
- 3M. Peddigari, J. H. Park, J. H. Han, C. K. Jeong, J. Jang, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, S. Y. Park, W. H. Yoon, D. S. Park, D. Y. Jeong, J. Ryu, K. J. Lee, G. T. Hwang, ACS Energy Lett. 2021, 6, 1383.
- 4P. Lv, J. Qian, C. Yang, Y. Wang, W. Wang, S. Huang, X. Cheng, Z. Cheng, ACS Energy Lett. 2021, 6, 3873.
- 5J. Qian, Y. Han, C. Yang, P. Lv, X. Zhang, C. Feng, X. Lin, S. Huang, X. Cheng, Z. Cheng, Nano Energy 2020, 74, 104862.
- 6M. Zhang, H. Yang, Y. Lin, Q. Yuan, H. Du, Energy Storage Mater. 2022, 45, 861.
- 7H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, J. Ryu, Adv. Funct. Mater. 2018, 28, 1803665.
- 8Z. Lu, W. Bao, G. Wang, S. K. Sun, L. Li, J. Li, H. Yang, H. Ji, A. Feteira, D. Li, F. Xu, A. K. Kleppe, D. Wang, S. Y. Liu, I. M. Reaney, Nano Energy 2021, 79, 105423.
- 9G. Wang, Z. Lu, H. Yang, H. Ji, A. Mostaed, L. Li, Y. Wei, A. Feteira, S. Sun, D. C. Sinclair, D. Wang, I. M. Reaney, J. Mater. Chem. A 2020, 8, 11414.
- 10Y. Lin, D. Li, M. Zhang, S. Zhan, Y. Yang, H. Yang, Q. Yuan, ACS Appl. Mater. Interfaces 2019, 11, 36824.
- 11X. Wu, X. Chen, Q. M. Zhang, D. Q. Tan, Energy Storage Mater. 2022, 44, 29.
- 12Z. Lu, G. Wang, W. Bao, J. Li, L. Li, A. Mostaed, H. Yang, H. Ji, D. Li, A. Feteira, F. Xu, D. C. Sinclair, D. Wang, S. Y. Liu, I. M. Reaney, Energy Environ. Sci. 2020, 13, 2938.
- 13B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang, Z. Shen, Y. Yu, S. Lan, F. Meng, Y. Liu, H. Huang, J. He, L. Gu, S. Zhang, L. Q. Chen, J. Zhu, C. W. Nan, Y. H. Lin, Nat. Mater. 2022, 21, 1074.
- 14P. Lv, J. Qian, C. Yang, T. Liu, Y. Wang, D. Wang, S. Huang, X. Cheng, Z. Cheng, Nano Energy 2022, 97, 107182.
- 15H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao, Y. Liu, F. Meng, E. J. Guo, L. Gu, D. Yi, X. R. Wang, H. Huang, J. L. MacManus-Driscoll, L. Q. Chen, K. J. Jin, C. W. Nan, Y. H. Lin, Science 2021, 374, 100.
- 16H. Bai, K. Zhu, Z. Wang, B. Shen, J. Zhai, Adv. Funct. Mater. 2021, 31, 2102646.
- 17J. Li, F. Li, Z. Xu, S. Zhang, Adv. Mater. 2018, 30, 1802155.
- 18P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, X. Wang, Adv. Energy Mater. 2019, 9, 1803048.
- 19X. Liu, Y. Zhao, N. Sun, Y. Li, X. Hao, Chem. Eng. J. 2021, 417, 128032.
- 20G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang, A. Feteira, D. Zhou, D. C. Sinclair, T. Ma, X. Tan, D. Wang, I. M. Reaney, Energy Environ. Sci. 2019, 12, 582.
- 21P. Zhao, Z. Cai, L. Chen, L. Wu, Y. Huan, L. Guo, L. Li, H. Wang, X. Wang, Energy Environ. Sci. 2020, 13, 4882.
- 22G. Ge, K. Huang, S. Wu, F. Yan, X. Li, B. Shen, J. Zhai, Energy Storage Mater. 2021, 35, 114.
- 23H. Wang, Y. Liu, T. Yang, S. Zhang, Adv. Funct. Mater. 2019, 29, 1807321.
- 24G. Ge, C. Shi, C. Chen, Y. Shi, F. Yan, H. Bai, J. Yang, J. Lin, B. Shen, J. Zhai, Adv. Mater. 2022, 34, 2201333.
- 25X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, J. Eur. Ceram. Soc. 2019, 39, 4778.
- 26X. Zhou, H. Qi, Z. Yan, G. Xue, H. Luo, D. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 43107.
- 27D. Li, D. Zhou, W. Liu, P. J. Wang, Y. Guo, X. G. Yao, H. X. Lin, Chem. Eng. J. 2021, 419, 129601.
- 28J. Zhang, Y. Lin, L. Wang, Y. Yang, H. Yang, Q. Yuan, J. Eur. Ceram. Soc. 2020, 40, 5458.
- 29J. Yin, Y. Zhang, X. Lv, J. Wu, J. Mater. Chem. A 2018, 6, 9823.
- 30W. Bai, X. Zhao, Y. Ding, L. Wang, P. Zheng, J. Hao, J. Zhai, Adv. Electron. Mater. 2020, 6, 2000332.
- 31H. Yang, J. Tian, Y. Lin, J. Ma, Chem. Eng. J. 2021, 418, 129337.
- 32W. Ma, Y. Zhu, M. A. Marwat, P. Fan, B. Xie, D. Salamon, Z. G. Ye, H. Zhang, J. Mater. Chem. C 2019, 7, 281.
- 33X. Qiao, D. Wu, F. Zhang, B. Chen, X. Ren, P. Liang, H. Du, X. Chao, Z. Yang, J. Mater. Chem. C 2019, 7, 10514.
- 34F. Yan, X. Zhou, X. He, H. Bai, S. Wu, B. Shen, J. Zhai, Nano Energy 2020, 75, 105012.
- 35F. Yan, H. Bai, G. Ge, J. Lin, K. Zhu, G. Li, J. Qian, B. Shen, J. Zhai, Z. Liu, Small 2022, 18, 2202575.
- 36D. Hu, Z. Pan, X. Zhang, H. Ye, Z. He, M. Wang, S. Xing, J. Zhai, Q. Fu, J. Liu, J. Mater. Chem. C 2020, 8, 591.
- 37Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 2015, 3, 18146.
- 38C. Zhu, Z. Cai, B. Luo, L. Guo, L. Li, X. Wang, J. Mater. Chem. A 2020, 8, 683.
- 39N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, J. Mater. Chem. A 2019, 7, 14118.
- 40L. Zhao, Q. Liu, J. Gao, S. Zhang, J. F. Li, Adv. Mater. 2017, 29, 1701824.
- 41F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi, G. Ge, B. Shen, J. Zhai, Energy Storage Mater. 2020, 30, 392.
- 42S. Zhou, Y. Pu, X. Zhang, Y. Shi, Z. Gao, Y. Feng, G. Shen, X. Wang, D. Wang, Chem. Eng. J. 2022, 427, 131684.
- 43Q. Yuan, F. Z. Yao, S. D. Cheng, L. Wang, Y. Wang, S. B. Mi, Q. Wang, X. Wang, H. Wang, Adv. Funct. Mater. 2020, 30, 2000191.
- 44Y. Pu, W. Wang, X. Guo, R. Shi, M. Yang, J. Li, J. Mater. Chem. C 2019, 7, 14384.
- 45X. Ren, L. Jin, Z. Peng, B. Chen, X. Qiao, D. Wu, G. Li, H. Du, Z. Yang, X. Chao, Chem. Eng. J. 2020, 390, 124566.
- 46T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, J. Mater. Chem. A 2017, 5, 554.
- 47X. Wang, X. Wang, Y. Huan, C. Li, J. Ouyang, T. Wei, ACS Appl. Mater. Interfaces 2022, 14, 9330.
- 48L. Chen, F. Long, H. Qi, H. Liu, S. Deng, J. Chen, Adv. Funct. Mater. 2022, 32, 2110478.
- 49M. Zhang, H. Yang, Y. Yu, Y. Lin, Chem. Eng. J. 2021, 425, 131465.
- 50F. Yan, X. He, H. Bai, B. Shen, J. Zhai, J. Mater. Chem. A 2021, 9, 15827.
- 51F. Yan, H. Bai, Y. Shi, G. Ge, X. Zhou, J. Lin, B. Shen, J. Zhai, Chem. Eng. J. 2021, 425, 130669.