Laser Induced Coffee-Ring Structure through Solid-Liquid Transition for Color Printing
Jiawang Xie
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorMing Qiao
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDezhi Zhu
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Jianfeng Yan
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorShengfa Deng
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGuangzhi He
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorMa Luo
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYuzhi Zhao
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJiawang Xie
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorMing Qiao
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDezhi Zhu
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Jianfeng Yan
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorShengfa Deng
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGuangzhi He
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorMa Luo
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYuzhi Zhao
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorAbstract
Metallic micro/nano structures with special physicochemical properties have undergone rapid development owing to their broad applications in micromachines and microdevices. Ultrafast laser processing is generally accepted as an effective technology for functional structures manufacture, however, the controllable fabrication of specific metallic micro/nano structures remains a challenge. Here, this work proposes a novel strategy of laser induced transient solid-liquid transition to fabricate unique structures. Through modulating the transient state of metal from solid to liquid phase using the initial pulse excitation, the subsequent ultrafast pulse-induced recoil pressure can suppress the plasma emission and removal of liquid phase metals, resulting in the controllable fabrication of coffee-ring structures. The solid-liquid transition dynamics, which related with the transient reflectivity and plasma intensity, are revealed by established two temperature model coupled with molecular dynamics model. The coffee-ring structure exhibits tunable structure color owing to various optical response, which can be used for color printing with large scale and high resolution. This work provides a promising strategy for fabricating functional micro/nano structures, which can greatly broaden the potential applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202205696-sup-0001-SuppMat.pdf5.1 MB | Supporting Information |
smll202205696-sup-0002-VideoS1.mp414.3 MB | Supplemental Video 1 |
smll202205696-sup-0003-VideoS2.mp411.5 MB | Supplemental Video 2 |
smll202205696-sup-0004-VideoS3.mp413.3 MB | Supplemental Video 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis, A. Javey, Nature 2016, 529, 509.
- 2J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang, G. S. C. Bermúdez, R. Illing, C. Wang, S. Zhou, J. Fassbender, M. Kaltenbrunner, D. Makarov, Nat. Commun. 2019, 10, 4405.
- 3L. Midolo, A. Schliesser, A. Fiore, Nat. Nanotechnol. 2018, 13, 11.
- 4N. Brandenberg, M. P. Lutolf, Adv. Mater. 2016, 28, 7450.
- 5N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. C. Neto, M. F. Crommie, Science 2010, 329, 544.
- 6D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, A. B. Khanikaev, ACS Photonics 2016, 3, 875.
- 7A. Papadopoulos, E. Skoulas, A. Mimidis, G. Perrakis, G. Kenanakis, G. D. Tsibidis, E. Stratakis, Adv. Mater. 2019, 31, 1901123.
- 8X. Y. Li, X. Zhou, K. Lu, Sci. Adv. 2020, 6, eaaz8003.
- 9T. V. Teperik, F. J. G. de Abajo, A. Borisov, M. Abdelsalam, P. Bartlett, Y. Sugawara, J. Baumberg, Nat. Photonics 2008, 2, 299.
- 10M. R. Powell, L. Cleary, M. Davenport, K. J. Shea, Z. S. Siwy, Nat. Nanotechnol. 2011, 6, 798.
- 11V. Nair, J. Yi, D. Isheim, M. Rotenberg, L. Meng, F. Shi, X. Chen, X. Gao, A. Prominski, Y. Jiang, J. Yue, C. T. Gallagher, D. N. Seidman, B. Tian, Sci. Adv. 2020, 6, eaaz2743.
- 12C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, F. Ö. Ilday, Nature 2016, 537, 84.
- 13J. Zhang, D. Zhu, J. Yan, C.-A. Wang, Nat. Commun. 2021, 12.
- 14D. Zhu, J. Yan, J. Xie, Z. Liang, H. Bai, ACS Nano 2021, 15, 13140.
- 15J. Yan, D. Zhu, J. Xie, Y. Shao, W. Xiao, Small 2020, 16, 2001101.
- 16A. Rudenko, A. Abou-Saleh, F. Pigeon, C. Mauclair, F. Garrelie, R. Stoian, J. P. Colombier, Acta Mater. 2020, 194, 93.
- 17H. Liu, W. Lin, Z. Lin, L. Ji, M. Hong, Adv. Funct. Mater. 2019, 29, 1903576.
- 18A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, R. Osellame, Nat. Photonics 2018, 13, 105.
- 19M. Qiao, H. Wang, H. Lu, S. Li, J. Yan, L. Qu, Y. Zhang, L. Jiang, Y. Lu, Sci. China Mater. 2020, 63, 1300.
- 20D. Zhu, J. Yan, Z. Liang, J. Xie, H. Bai, Rare Met. 2021, 40, 3454.
- 21J. Xie, J. Yan, D. Zhu, G. He, Adv. Funct. Mater. 2022, 32, 2108802.
- 22X. Sedao, M. V. Shugaev, C. Wu, T. Douillard, C. Esnouf, C. Maurice, S. Reynaud, F. Pigeon, F. Garrelie, L. V. Zhigilei, J. P. Colombier, ACS Nano 2016, 10, 6995.
- 23N. Jourdain, L. Lecherbourg, V. Recoules, P. Renaudin, F. Dorchies, Phys. Rev. Lett. 2021, 126, 065001.
- 24C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, T. Sun, Phys. Rev. X 2019, 9, 021052.
- 25S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, V. E. Fortov, JETP Lett. 2012, 95, 176.
- 26X. Sedao, A. A. Saleh, A. Rudenko, T. Douillard, C. Esnouf, S. Reynaud, C. Maurice, F. Pigeon, F. Garrelie, J.-P. Colombier, ACS Photonics 2018, 5, 1418.
- 27G. D. Förster, L. J. Lewis, Phys. Rev. B 2018, 97, 224301.
- 28R. Fang, A. Vorobyev, C. Guo, Light: Sci. Appl. 2017, 6, e16256.
- 29G. D. Tsibidis, C. Fotakis, E. Stratakis, Phys. Rev. B 2015, 92, 041405(R).
- 30T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang, X. Zheng, H. Xie, Z. Zhang, J. Yang, C. Guo, Light: Sci. Appl. 2020, 9, 69.
- 31J. Yan, S. Deng, D. Zhu, H. Bai, H. Zhu, Nano Energy 2022, 97, 107188.
- 32A. Block, M. Liebel, R. Yu, M. Spector, Y. Sivan, F. J. G. de Abajo, N. F. van Hulst, Sci. Adv. 2019, 5, eaav8965.
- 33A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, S. Juodkazis, Nat. Commun. 2011, 2, 445.
- 34S. I. Anisimov, B. L. Kapeliovich, T. L. Perelman, Sov. Phys. JETP 1974, 39, 375.
- 35Y. Ihm, D. H. Cho, D. Sung, D. Nam, C. Jung, T. Sato, S. Kim, J. Park, S. Kim, M. Gallagher-Jones, Y. Kim, R. Xu, S. Owada, J. H. Shim, K. Tono, M. Yabashi, T. Ishikawa, J. Miao, D. Y. Noh, C. Song, Nat. Commun. 2019, 10, 2411.
- 36Z. Lin, L. V. Zhigilei, V. Celli, Phys. Rev. B 2008, 77, 075133.
- 37D. S. Ivanov, V. P. Lipp, A. Blumenstein, F. Kleinwort, V. P. Veiko, E. Yakovlev, V. Roddatis, M. E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Phys. Rev. Appl. 2015, 4, 064006.
- 38Z. Liang, S. Zhang, X. Li, T. Wang, Y. Huang, W. Hang, Z. Yang, J. Li, Z. Tian, Sci. Adv. 2017, 3, eaaq1059.
- 39A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 1999, 82, 3883.
- 40B. Rethfeld, D. S. Ivanov, M. E. Garcia, S. I. Anisimov, J. Phys. D: Appl. Phys. 2017, 50.
- 41M. V. Shugaev, I. Gnilitskyi, N. M. Bulgakova, L. V. Zhigilei, Phys. Rev. B 2017, 96, 205429.
- 42R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature 1997, 389, 827.
- 43D. Mampallil, H. B. Eral, Adv. Colloid Interface Sci. 2018, 252, 38.
- 44S. H. Davis, Annu. Rev. Fluid Mech. 1987, 19, 403.
- 45P. J. Yunker, T. Still, M. A. Lohr, A. G. Yodh, Nature 2011, 476, 308.
- 46J.-M. Guay, A. C. Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, A. Weck, Nat. Commun. 2017, 8, 16095.
- 47S. Bai, D. Serien, A. Hu, K. Sugioka, Adv. Funct. Mater. 2018, 28, 1706262.
- 48A. V. Kimel, M. Li, Nat. Rev. Mater. 2019, 4, 189.
- 49C. Pan, L. Jiang, J. Sun, Q. Wang, F. Wang, K. Wang, Y. Lu, Y. Wang, L. Qu, T. Cui, Light: Sci. Appl. 2020, 9, 80.
- 50M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte, J. K. Baldwin, L. B. Fletcher, J. B. Kim, A. Ng, R. Redmer, A. H. Reid, P. Shekhar, X. Z. Shen, M. Shen, K. Sokolowski-Tinten, Y. Y. Tsui, Y. Q. Wang, Q. Zheng, X. J. Wang, S. H. Glenzer, Science 2018, 360, 1451.
- 51M. E. Povarnitsyn, V. B. Fokin, P. R. Levashov, T. E. Itina, Phys. Rev. B 2015, 92, 174104.
- 52X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, T. F. Kelly, Acta Mater. 2001, 49, 4005.