Highly Flexible Freestanding BaTiO3-CoFe2O4 Heteroepitaxial Nanostructure Self-Assembled with Room-Temperature Multiferroicity
Corresponding Author
Gaokuo Zhong
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feng An
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorKe Qu
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYongqi Dong
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029 China
Search for more papers by this authorZhenzhong Yang
Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, Shanghai, 200241 China
Search for more papers by this authorLiyufen Dai
School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorShuhong Xie
School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorRong Huang
Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, Shanghai, 200241 China
Search for more papers by this authorZhenlin Luo
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029 China
Search for more papers by this authorCorresponding Author
Jiangyu Li
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gaokuo Zhong
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feng An
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorKe Qu
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYongqi Dong
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029 China
Search for more papers by this authorZhenzhong Yang
Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, Shanghai, 200241 China
Search for more papers by this authorLiyufen Dai
School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorShuhong Xie
School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorRong Huang
Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, Shanghai, 200241 China
Search for more papers by this authorZhenlin Luo
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029 China
Search for more papers by this authorCorresponding Author
Jiangyu Li
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Multiferroics with simultaneous electric and magnetic orderings are highly desirable for sensing, actuation, data storage, and bio-inspired systems, yet developing flexible materials with robust multiferroic properties at room temperature is a long-term challenge. Utilizing water-soluble Sr3Al2O6 as a sacrificial layer, the authors have successfully self-assembled a freestanding BaTiO3-CoFe2O4 heteroepitaxial nanostructure via pulse laser deposition, and confirmed its epitaxial growth in both out-of-plane and in-plane directions, with highly ordered CoFe2O4 nanopillars embedded in a single crystalline BaTiO3 matrix free of substrate constraint. The freestanding nanostructure enjoys super flexibility and mechanical integrity, not only capable of spontaneously curving into a roll, but can also be bent with a radius as small as 4.23 µm. Moreover, piezoelectricity and ferromagnetism are demonstrated at both microscopic and macroscopic scales, confirming its robust multiferroicity at room temperature. This work establishes an effective route for flexible multiferroic materials, which have the potential for various practical applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104213-sup-0001-SuppMat.pdf1 MB | Supporting Information |
smll202104213-sup-0002-MovieS1.mp49.6 MB | Supplemental Movie 1 |
smll202104213-sup-0003-MovieS2.mp44.7 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Ren, Y. Sun, D. L. Zhao, A. Aili, S. Zhang, C. Q. Shi, J. L. Zhang, H. Y. Geng, J. Zhang, L. X. Zhang, J. L. Xiao, R. G. Yang, Sci. Adv. 2021, 7, eabe0586.
- 2S. Chen, Z. Lou, D. Chen, G. Z. Shen, Adv. Mater. 2018, 30, 1705400.
- 3E. M. Song, J. H. Li, S. M. Won, W. B. Bai, J. A. Rogers, Nat. Mater. 2020, 19, 590.
- 4M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458.
- 5H. Tao, S. W. Hwang, B. Marelli, B. An, J. E. Moreau, M. M. Yang, M. A. Brenckle, S. Kim, D. L. Kaplan, J. A. Rogers, F. G. Omenetto, Proc. Natl. Acad. Sci. USA 2014, 111, 17385.
- 6Y. Ni, Y. F. Wang, W. T. Xu, Small 2021, 17, 1905332.
- 7K. Myny, Nat. Electron. 2018, 1, 30.
- 8G. K. Zhong, J. Y. Li, J. Materiomics 2020, 6, 455.
- 9Y. Bitla, Y. H. Chu, Nanoscale 2020, 12, 18523.
- 10C. W. Nan, J. M. Liu, Natl. Sci. Rev. 2019, 6, 620.
- 11M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 2016, 1, 16046.
- 12Z. W. Li, Y. J. Wang, G. Tian, P. L. Li, L. N. Zhao, F. Y. Zhang, J. X. Yao, H. Fan, X. Song, D. Y. Chen, Z. Fan, M. H. Qin, M. Zeng, Z. Zhang, X. B. Lu, S. J. Hu, C. H. Lei, Q. F. Zhu, J. Y. Li, X. S. Gao, J. M. Liu, Sci. Adv. 2017, 3, e1700919.
- 13G. K. Zhong, F. An, Y. Bitla, J. B. Wang, X. L. Zhong, J. X. Yu, W. P. Gao, Y. Zhang, C. B. Tan, Y. Ou, J. Jiang, Y. H. Hsieh, X. Q. Pan, S. H. Xie, Y. H. Chu, J. Y. Li, ACS Nano 2018, 12, 9558.
- 14J. M. Hu, C. W. Nan, L. Q. Chen, Natl. Sci. Rev. 2019, 6, 621.
- 15M. Tomczyk, I. Bretos, R. Jiménez, A. Mahajan, E. V. Ramana, M. L. Calzada, P. M. Vilarinho, J. Mater. Chem. C 2017, 5, 12529.
- 16M. Y. Alnassar, Y. P. Ivanov, J. Kosel, Adv. Electron. Mater. 2016, 2, 1600081.
- 17A. Chaurasiy, P. Pal, J. V. Vas, D. Kumar, S. N. Piramanayagam, A. K. Singh, R. Medwal, R. S. Rawata, Ceram. Int. 2020, 4, 25873.
- 18H. Palneedi, H. G. Yeo, G. T. Hwang, V. Annapureddy, J. W. Kim, J. J. Choi, S. Trolier-McKinstry, J. Ryu, APL Mater. 2017, 5, 096111.
- 19T. Amrillah, Y. Bitla, K. Shin, T. N. Yang, Y. H. Hsieh, Y. Y. Chiou, H.-J. Liu, T. H. Do, D. Su, Y. C. Chen, S. U. Jen, L. Q. Chen, K. H. Kim, J. Y. Juang, Y. H. Chu, ACS Nano 2017, 11, 6122.
- 20Z. S. Xie, Y. X. Yang, L. Fang, Y. J. Wang, X. F. Ding, G. L. Yuan, J. M. Liu, Appl. Phys. Lett. 2019, 115, 112902.
- 21D. Lu, D. J. Baek, S. S. Hong, L. F. Kourkoutis, Y. Hikita, H. Y. Hwang, Nat. Mater. 2016, 15, 1255.
- 22S. S. Hong, M. Q. Gu, M. Verma, V. Harbola, B. Y. Wang, D. Lu, A. Vailionis, Y. Hikita, R. Pentcheva, J. M. Rondinelli, H. Y. Hwang, Science 2020, 368, 71.
- 23D. X. Ji, S. H. Cai, T. R. Paudel, H. Y. Sun, C. C. Zhang, L. Han, Y. F. Wei, Y. P. Zang, M. Gu, Y. Zhang, W. P. Gao, H. X. Huyan, W. Guo, D. Wu, Z. B. Gu, E. Y. Tsymbal, P. Wang, Y. F. Nie, X. Q. Pan, Nature 2019, 570, 87.
- 24L. Han, Y. H. Fang, Y. Q. Zhao, Y. P. Zang, Z. B. Gu, Y. F. Nie, X. Q. Pan, Adv. Mater. Interfaces 2020, 7, 1901604.
- 25G. H. Dong, S. Z. Li, M. T. Yao, Z. Y. Zhou, Y. Q. Zhang, X. Han, Z. L. Luo, J. X. Yao, B. Peng, Z. Q. Hu, H. B. Huang, T. T. Jia, J. Y. Li, W. Ren, Z. G. Ye, X. D. Ding, J. Sun, C. W. Nan, L. Q. Chen, J. Li, M. Liu, Science 2019, 366, 475.
- 26H. Wang, L. K. Shen, T. Z. Duan, C. R. Ma, C. M. Cao, C. J. Jiang, X. L. Lu, H. Y. Sun, M. Liu, ACS Appl. Mater. Interfaces 2019, 11, 22677.
- 27F. An, K. Qu, G. K. Zhong, Y. Q. Dong, W. J. Ming, M. F. Zi, Z. J. Liu, Y. D. Wang, B. Y. Qi, Z. Ding, J. Xu, Z. L. Luo, X. S. Gao, S. H. Xie, P. Gao, J. Y. Li, Adv. Funct. Mater. 2020, 30, 2003495.
- 28Y. N. Zhao, R. C. Peng, Y. T. Guo, Z. J. Liu, Y. Q. Dong, S. S. Zhao, Y. J. Li, G. H. Dong, Y. Hu, J. W. Zhang, Y. Peng, T. N. Yang, B. Tian, Y. F. Zhao, Z. Y. Zhou, Z. D. Jiang, Z. L. Luo, M. Liu, Adv. Funct. Mater. 2021, 31, 2009376.
- 29M. T. Yao, Y. J. Li, B. Tian, Q. Mao, G. H. Dong, Y. X. Cheng, W. X. Hou, Y. N. Zhao, T. Wang, Y. F. Zhao, Z. D. Jiang, M. Liu, Z. Y. Zhou, J. Mater. Chem. C 2020, 8, 17099.
- 30B. Peng, R. C. Peng, Y. Q. Zhang, G. H. Dong, Z. Y. Zhou, Y. Q. Zhou, T. Li, Z. J. Liu, Z. L. Luo, S. H. Wang, Y. Xia, R. B. Qiu, X. X. Cheng, F. Xue, Z. Q. Hu, W. Ren, Z. G. Ye, L. Q. Chen, Z. W. Shan, T. Min, M. Liu, Sci. Adv. 2020, 6, eaba5847.
- 31R. Guo, L. You, W. N. Lin, A. Abdelsamie, X. Y. Shu, G. W. Zhou, S. H. Chen, L. Liu, X. Yan, J. L. Wang, J. S. Chen, Nat. Commun. 2020, 11, 2571.
- 32R. Ramesh, N. A. Spaldin, Nat. Mater. 2007, 6, 21.
- 33N. A. Spaldin, R. Ramesh, Nat. Mater. 2019, 18, 203.
- 34H. M. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 2004, 303, 661.
- 35J. H. Lia, I. Levinb, J. Slutsker, V. Provenzano, P. K. Schenck, Appl. Phys. Lett. 2005, 87, 072909.
- 36Y. M. Zhu, P. P. Liu, R. Yu, Y. H. Hsieh, D. Ke, Y. H. Chu, Q. Zhan, Nanoscale 2014, 6, 5126.
- 37M. Geramilla, R. Balakrishnan, S. T. Natarajan, M. S. R. Rao, Appl. Phys. A 2019, 125, 39.
- 38K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom, Science 2004, 306, 1005.
- 39P. C. Dorsey, P. Lubitz, D. B. Chrisey, J. S. Horwitz, J. Appl. Phys. 1996, 79, 6338.
- 40R. Tazaki, D. S. Fu, M. Itoh, M. Daimon, S. Koshihara, J. Phys.: Condens. Matter 2009, 21, 215903.
- 41Y. H. Hou, Y. J. Zhao, Z. W. Liu, H. Y. Yu, X. C. Zhong, W. Q. Qiu, D. C. Zeng, L. S. Wen, J. Phys. D: Appl. Phys. 2010, 43, 445003.
- 42G. H. Dong, Y. Hu, C. Q. Guo, H. J. Wu, H. X. Liu, R. B. Peng, D. Xian, Q. Miao, Y. Q. Dong, Y. N. Zhao, B. Peng, Z. G. Wang, Z. Q. Hu, J. W. Zhang, X. Y. Wang, J. W. Hong, Z. L. Luo, W. Ren, Z. G. Ye, Z. D. Jiang, Z. Y. Zhou, H. B. Huang, Y. Peng, M. Liu, Self-Assembled Epitaxial Ferroelectric Oxide Nanospring with Super-Scalability 2021, https://doi.org/10.21203/rs.3.rs-779080/v1.
10.21203/rs.3.rs-779080/v1 Google Scholar
- 43J. Y. Li, J. F. Li, Q. Yu, Q. N. Chen, S. H. Xie, J. Materiomics 2015, 1, 3.
- 44Y. Y. Liu, J. Seidel, J. Y. Li, Natl. Sci. Rev. 2019, 6, 626.
- 45C. Liu, F. An, P. S. M. Gharavi, Q. W. Lu, J. K. Zha, C. Chen, L. M. Wang, X. Z. Zhan, Z. D. Xu, Y. Zhang, K. Qu, J. X. Yao, Y. Ou, Z. M. Zhao, X. L. Zhong, D. W. Zhang, N. Valanoor, L. Chen, T. Zhu, D. Y. Chen, X. F. Zhai, P. Gao, T. T. Jia, S. H. Xie, G. K. Zhong, J. Y. Li, Natl. Sci. Rev. 2020, 7, 84.
- 46G. K. Zhong, Y. Bitla, J. B. Wang, X. L. Zhong, F. An, Y. Y. Chin, Y. Zhang, W. P. Gao, Y. Zhang, A. Eshghinejad, E. N. Esfahani, Q. F. Zhu, C. B. Tan, X. J. Meng, H. J. Lin, X. Q. Pan, S. H. Xie, Y. H. Chu, J. Y. Li, Acta Mater. 2018, 145, 488.
- 47A. P. Chen, Q. Su, H. Han, E. Enriquez, Q. X. Jia, Adv. Mater. 2019, 31, 1803241.
- 48Y. Zhang, L. K. Shen, M. Liu, X. Li, X. L. Lu, L. Lu, C. R. Ma, C. Y. You, A. P. Chen, C. W. Huang, L. Chen, M. Alexe, C. L. Jia, ACS Nano 2017, 11, 8002.
- 49H. J. Liu, C. K. Wang, D. Su, T. Amtillah, Y. H. Hsieh, K. H. Wu, Y. C. Chen, J. Y. Juang, L. M. Eng, S. U. Jen, Y. H. Chu, ACS Appl. Mater. Interfaces 2017, 9, 7297.
- 50D. H. Kim, N. M. Aimon, X. Y. Sun, L. Kornblum, F. J. Walker, C. H. Ahn, C. A. Ross, Adv. Funct. Mater. 2014, 24, 5889.
- 51D. H. Kim, N. M. Aimon, X. Y. Sun, C. A. Ross, Adv. Funct. Mater. 2014, 24, 2334.