Probing Insulin Sensitivity with Metabolically Competent Human Stem Cell-Derived White Adipose Tissue Microphysiological Systems
Lin Qi
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorPeter-James H. Zushin
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorChing-Fang Chang
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorYue Tung Lee
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorDiana L. Alba
Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, 94143 USA
Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143 USA
Search for more papers by this authorSuneil K. Koliwad
Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, 94143 USA
Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143 USA
Search for more papers by this authorCorresponding Author
Andreas Stahl
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
E-mail: [email protected]
Search for more papers by this authorLin Qi
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorPeter-James H. Zushin
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorChing-Fang Chang
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorYue Tung Lee
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorDiana L. Alba
Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, 94143 USA
Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143 USA
Search for more papers by this authorSuneil K. Koliwad
Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, 94143 USA
Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143 USA
Search for more papers by this authorCorresponding Author
Andreas Stahl
Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Impaired white adipose tissue (WAT) function has been recognized as a critical early event in obesity-driven disorders, but high buoyancy, fragility, and heterogeneity of primary adipocytes have largely prevented their use in drug discovery efforts highlighting the need for human stem cell-based approaches. Here, human stem cells are utilized to derive metabolically functional 3D adipose tissue (iADIPO) in a microphysiological system (MPS). Surprisingly, previously reported WAT differentiation approaches create insulin resistant WAT ill-suited for type-2 diabetes mellitus drug discovery. Using three independent insulin sensitivity assays, i.e., glucose and fatty acid uptake and suppression of lipolysis, as the functional readouts new differentiation conditions yielding hormonally responsive iADIPO are derived. Through concomitant optimization of an iADIPO-MPS, it is abled to obtain WAT with more unilocular and significantly larger (≈40%) lipid droplets compared to iADIPO in 2D culture, increased insulin responsiveness of glucose uptake (≈2–3 fold), fatty acid uptake (≈3–6 fold), and ≈40% suppressing of stimulated lipolysis giving a dynamic range that is competent to current in vivo and ex vivo models, allowing to identify both insulin sensitizers and desensitizers.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202103157-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 WHO, Obesity and overweight, https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed: April 2020).
- 2a) S. M. Haffner, Diabetes Res. Clin. Pract. 2003, 61, S9; b) A. Santoro, T. E. McGraw, B. B. Kahn, Cell Metab. 2021, 33, 748.
- 3a) A. L. Birkenfeld, G. I. Shulman, Hepatology 2014, 59, 713; b) K. Cusi, Curr. Diabetes Rep. 2010, 10, 306.
- 4E. D. Rosen, B. M. Spiegelman, Cell 2014, 156, 20.
- 5a) D. E. Chusyd, D. Wang, D. M. Huffman, T. R. Nagy, Front. Nutr. 2016, 3, 10; b) H. Hauner, T. Skurk, M. Wabitsch, in Adipose Tissue Protocols, Humana Press Inc., New Jersey 2001, p. 239.
- 6a) H. Zhang, S. Kumar, A. Barnett, M. Eggo, J. Endocrinol. 2000, 164, 119; b) M. J. Harms, Q. Li, S. Lee, C. Zhang, B. Kull, S. Hallen, A. Thorell, I. Alexandersson, C. E. Hagberg, X.-R. Peng, Cell Rep. 2019, 27, 213.
- 7A. Sen, Y. R. Lea-Currie, D. Sujkowska, D. M. Franklin, W. O. Wilkison, Y. D. C. Halvorsen, J. M. Gimble, J. Cell. Biochem. 2001, 81, 312.
10.1002/1097-4644(20010501)81:2<312::AID-JCB1046>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 8P. A. Zuk, M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, M. H. Hedrick, Tissue Eng. 2001, 7, 211.
- 9T. Ahfeldt, R. T. Schinzel, Y.-K. Lee, D. Hendrickson, A. Kaplan, D. H. Lum, R. Camahort, F. Xia, J. Shay, E. P. Rhee, Nat. Cell Biol. 2012, 14, 209.
- 10A. G. Elefanty, E. G. Stanley, Nat. Cell Biol. 2012, 14, 126.
- 11a) A. M. Unser, Y. Tian, Y. Xie, Biotechnol. Adv. 2015, 33, 962; b) T. Mohsen-Kanson, A. L. Hafner, B. Wdziekonski, Y. Takashima, P. Villageois, A. Carrière, M. Svensson, C. Bagnis, B. Chignon-Sicard, P. A. Svensson, Stem Cells 2014, 32, 1459; c) C. R. Warren, J. F. O'Sullivan, M. Friesen, C. E. Becker, X. Zhang, P. Liu, Y. Wakabayashi, J. E. Morningstar, X. Shi, J. Choi, F. Xia, D. T. Peters, M. H. C. Florido, A. M. Tsankov, E. Duberow, L. Comisar, J. Shay, X. Jiang, A. Meissner, K. Musunuru, S. Kathiresan, L. Daheron, J. Zhu, R. E. Gerszten, R. C. Deo, R. S. Vasan, C. J. O'Donnell, C. A. Cowan, Cell Stem Cell 2017, 20, 547.
- 12Y. Liu, P. Kongsuphol, S. B. N. Gourikutty, Q. Ramadan, Biomed. Microdevices 2017, 19, 18.
- 13a) J. Merlin, M. Sato, C. Nowell, M. Pakzad, R. Fahey, J. Gao, N. Dehvari, R. J. Summers, T. Bengtsson, B. A. Evans, D. S. Hutchinson, Cell. Signalling 2018, 42, 54;
b) A. Revittser, Y. A. Neguliaev, Cell Tissue Biol. 2018, 12, 367;
10.1134/S1990519X18050061 Google Scholarc) D. Contador, F. Ezquer, M. Espinosa, M. Arango-Rodriguez, C. Puebla, L. Sobrevia, P. Conget, Exp. Biol. Med. 2015, 240, 1235; d) Y. Pu, A. Veiga-Lopez, Cell. Mol. Biol. Lett. 2017, 22, 6.
- 14a) J. L. Kelly, M. W. Findlay, K. R. Knight, A. Penington, E. W. Thompson, A. Messina, W. A. Morrison, Tissue Eng. 2006, 12, 2041; b) W. Wang, K. Itaka, S. Ohba, N. Nishiyama, U. I. Chung, Y. Yamasaki, K. Kataoka, Biomaterials 2009, 30, 2705; c) Y. I. Yang, H. I. Kim, M. Y. Choi, S. H. Son, M. J. Seo, J. Y. Seo, W. H. Jang, Y. C. Youn, K. J. Choi, S. H. Cheong, J. Cell. Physiol. 2010, 224, 807.
- 15a) W. Hassan, Y. Dong, W. Wang, Stem Cell Res. Ther. 2013, 4, 32; b) J. C. Gerlach, Y.-C. Lin, C. A. Brayfield, D. M. Minteer, H. Li, J. P. Rubin, K. G. Marra, Tissue Eng., Part C 2012, 18, 54; c) K. Gwon, E. Kim, G. Tae, Acta Biomater. 2017, 49, 284; d) M. Kuss, J. Kim, D. Qi, S. Wu, Y. Lei, S. Chung, B. Duan, Acta Biomater. 2018, 71, 486; e) J. P. Yang, A. E. Anderson, A. McCartney, X. Ory, G. Ma, E. Pappalardo, J. Bader, J. H. Elisseeff, Tissue Eng., Part A 2017, 23, 253; f) F. Louis, S. Kitano, J. F. Mano, M. Matsusaki, Acta Biomater. 2019, 84, 194.
- 16A. Y. Hsiao, T. Okitsu, H. Teramae, S. Takeuchi, Adv. Healthcare Mater. 2016, 5, 548.
- 17N. Azizipour, R. Avazpour, D. H. Rosenzweig, M. Sawan, A. Ajji, Micromachines 2020, 11, 599.
- 18a) D. Huh, H. J. Kim, J. P. Fraser, D. E. Shea, M. Khan, A. Bahinski, G. A. Hamilton, D. E. Ingber, Nat. Protoc. 2013, 8, 2135; b) J. D. Caplin, N. G. Granados, M. R. James, R. Montazami, N. Hashemi, Adv. Healthcare Mater. 2015, 4, 1426.
- 19a) X. Wu, N. Schneider, A. Platen, I. Mitra, M. Blazek, R. Zengerle, R. Schule, M. Meier, Proc. Natl. Acad. Sci. USA 2016, 113, E4143; b) X. Li, C. J. Easley, Anal. Bioanal. Chem. 2018, 410, 791.
- 20a) M. Stolic, A. Russell, L. Hutley, G. Fielding, J. Hay, G. MacDonald, J. Whitehead, J. Prins, Int. J. Obes. 2002, 26, 17;
b) H. Westergren, A. Danielsson, F. H. Nystrom, P. Strålfors, Metabolism 2005, 54, 781;
c) M. Lundgren, J. Burén, T. Ruge, T. Myrnas, J. W. Eriksson, J. Clin. Endocrinol. Metab. 2004, 89, 2989;
d) F. Giorgino, L. Laviola, J. W. Eriksson, Acta Physiol. Scand. 2005, 183, 13;
e) O. Varlamov, R. Somwar, A. Cornea, P. Kievit, K. L. Grove, C. T. Roberts Jr., Am. J. Physiol. Endocrinol. Metab. 2010, 299, E486;
f) P. Arner, E. Kriegholm, P. Engfeldt, J. Bolinder, J. Clin. Invest. 1990, 85, 893;
g) V. Stich, M. Berlan, Proc. Nutr. Soc. 2004, 63, 369;
h) P. Barbe, L. Millet, J. Galitzky, M. Lafontan, M. Berlan, Br. J. Pharmacol. 1996, 117, 907;
i) P. J. Campbell, M. G. Carlson, J. Hill, N. Nurjhan, Am. J. Physiol. Endocrinol. Metab. 2006, 263, E1063;
10.1152/ajpendo.2006.263.6.E1063 Google Scholarj) S. E. Meek, K. S. Nair, M. D. Jensen, Diabetes 1999, 48, 10.
- 21C. G. Pfeifer, A. Karl, M. Kerschbaum, A. Berner, S. Lang, R. Schupfner, M. Koch, P. Angele, M. Nerlich, M. B. Mueller, Int. J. Stem Cells 2019, 12, 139.
- 22R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, C. S. Chen, Dev. Cell 2004, 6, 483.
- 23a) X. Wu, N. Schneider, A. Platen, I. Mitra, M. Blazek, R. Zengerle, R. Schüle, M. Meier, Proc. Natl. Acad. Sci. USA 2016, 113, E4143; b) A. Zambon, A. Zoso, O. Gagliano, E. Magrofuoco, G. P. Fadini, A. Avogaro, M. Foletto, S. Quake, N. Elvassore, Anal. Chem. 2015, 87, 6535; c) X. Li, J. C. Brooks, J. Hu, K. I. Ford, C. J. Easley, Lab Chip 2017, 17, 341; d) J. Rogal, C. Binder, E. Kromidas, J. Roosz, C. Probst, S. Schneider, K. Schenke-Layland, P. Loskill, Sci. Rep. 2020, 10, 6666.
- 24J. R. Mauney, T. Nguyen, K. Gillen, C. Kirker-Head, J. M. Gimble, D. L. Kaplan, Biomaterials 2007, 28, 5280.
- 25a) E. C. Mariman, P. Wang, Cell. Mol. Life Sci. 2010, 67, 1277; b) T.-H. Chun, Adipocyte 2012, 1, 89.
- 26a) A. Zulian, R. Cancello, A. Girola, L. Gilardini, L. Alberti, M. Croci, G. Micheletto, P. Danelli, C. Invitti, Obes. Facts 2011, 4, 27; b) K. A. Lo, A. Labadorf, N. J. Kennedy, M. S. Han, Y. S. Yap, B. Matthews, X. Xin, L. Sun, R. J. Davis, H. F. Lodish, Cell Rep. 2013, 5, 259; c) B. D. Henriksbo, A. K. Tamrakar, J. Xu, B. M. Duggan, J. F. Cavallari, J. Phulka, M. R. Stampfli, A. A. Ashkar, J. D. Schertzer, Diabetes 2019, 68, 1441.
- 27T. Skurk, H. Hauner, Primary Culture of Human Adipocyte Precursor cells: Expansion and Differentiation. In Human Cell Culture Protocols, Humana Press New York 2012, pp. 215–226.
- 28K. I. Hilgendorf, C. T. Johnson, A. Mezger, S. L. Rice, A. M. Norris, J. Demeter, W. J. Greenleaf, J. F. Reiter, D. Kopinke, P. K. Jackson, Cell 2019, 179, 1289.
- 29a) U. Kintscher, R. E. Law, Am. Jo. Physiol. Endocrinol. Metab. 2005, 288, E287; b) T. Albrektsen, K. S. Frederiksen, W. E. Holmes, E. Boel, K. Taylor, J. Fleckner, Diabetes 2002, 51, 1042.
- 30P. Wang, J. Renes, F. Bouwman, A. Bunschoten, E. Mariman, J. Keijer, Diabetologia 2007, 50, 654.
- 31Y. Wang, W. Zhu, H. Zhang, J. Reprod. Contracept. 2014, 25, 199.
- 32A. M. Fayyad, A. A. Khan, S. H. Abdallah, S. S. Alomran, K. Bajou, M. N. K. Khattak, Int. J. Mol. Sci. 2019, 20, 1618.
- 33M. P. Czech, Mol. Metab. 2020, 34, 27.
- 34P. Ebeling, H. A. Koistinen, V. A. Koivisto, FEBS Lett. 1998, 436, 301.
- 35a) P. Loskill, T. Sezhian, K. M. Tharp, F. T. Lee-Montiel, S. Jeeawoody, W. M. Reese, P.-J. H. Zushin, A. Stahl, K. E. Healy, Lab Chip 2017, 17, 1645; b) N. Tanataweethum, A. Zelaya, F. Yang, R. N. Cohen, E. M. Brey, A. Bhushan, Biotechnol. Bioeng. 2018, 115, 1979; c) J. C. Brooks, R. L. Judd, C. J. Easley, Thermogenic Fat, Springer Nature, New York, NY 2017, p. 185 ; d) J. Zhu, J. He, M. Verano, A. T. Brimmo, A. Glia, M. A. Qasaimeh, P. Chen, J. O. Aleman, W. Chen, Lab Chip 2018, 18, 3550; e) C. E. Dugan, R. T. Kennedy, Methods Enzymol. 2014, 538, 195; f) A. M. Clark, K. M. Sousa, C. Jennings, O. A. MacDougald, R. T. Kennedy, Anal. Chem. 2009, 81, 2350.
- 36a) Y. Liu, P. Kongsuphol, S. Y. Chiam, Q. X. Zhang, S. B. N. Gourikutty, S. Saha, S. K. Biswas, Q. Ramadan, Lab Chip 2019, 19, 241; b) P. Kongsuphol, S. Gupta, Y. Liu, S. B. N. Gourikutty, S. K. Biswas, Q. Ramadan, Sci. Rep. 2019, 9, 4887.
- 37F. H. Lau, K. Vogel, J. P. Luckett, M. Hunt, A. Meyer, C. L. Rogers, O. Tessler, C. L. Dupin, H. S. Hilaire, K. N. Islam, Tissue Eng., Part C 2018, 24, 135.
- 38a) C. M. Nelson, C. S. Chen, FEBS Lett. 2002, 514, 238; b) B. D. Pope, C. R. Warren, M. O. Dahl, C. V. Pizza, D. E. Henze, N. R. Sinatra, G. M. Gonzalez, H. Chang, Q. Liu, A. L. Glieberman, Lab Chip 2020, 20, 4152.
- 39T. E. G. Krueger, D. L. J. Thorek, S. R. Denmeade, J. T. Isaacs, W. N. Brennen, Stem Cells Transl. Med. 2018, 7, 651.
- 40F. A. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, Inc., London 2012.
- 41K. A. Kilian, B. Bugarija, B. T. Lahn, M. Mrksich, Proc. Natl. Acad. Sci. USA 2010, 107, 4872.
- 42A. J. Klingelhutz, F. A. Gourronc, A. Chaly, D. A. Wadkins, A. J. Burand, K. R. Markan, S. O. Idiga, M. Wu, M. J. Potthoff, J. A. Ankrum, Sci. Rep. 2018, 8, 523.
- 43L. Tytgat, L. Van Damme, M. d. P. O. Arevalo, H. Declercq, H. Thienpont, H. Otteveare, P. Blondeel, P. Dubruel, S. Van Vlierberghe, Int. J. Biol. Macromol. 2019, 140, 929.
- 44P. Cui, S. Wang, J. Pharm. Anal. 2019, 9, 238.
- 45a) M. J. Lee, Y. Wu, S. K. Fried, Obesity 2012, 20, 2334; b) C. Brannmark, A. Paul, D. Ribeiro, B. Magnusson, G. Brolen, A. Enejder, A. Forslow, PLoS One 2014, 9, e113620.
- 46A.-C. Volz, B. Omengo, S. Gehrke, P. J. Kluger, Differentiation 2019, 110, 19.
- 47A. K. Jha, K. M. Tharp, S. Browne, J. Ye, A. Stahl, Y. Yeghiazarians, K. E. Healy, Biomaterials 2016, 89, 136.
- 48C. G. Knight, L. F. Morton, A. R. Peachey, D. S. Tuckwell, R. W. Farndale, M. J. Barnes, J. Biol. Chem. 2000, 275, 35.
- 49F. Louwen, A. Ritter, N. Kreis, J. Yuan, Obes. Rev. 2018, 19, 888.
- 50a) D. L. Alba, J. A. Farooq, M. Y. Lin, A. L. Schafer, J. Shepherd, S. K. Koliwad, J. Clin. Endocrinol. Metab. 2018, 103, 3194; b) Y. Oguri, K. Shinoda, H. Kim, D. L. Alba, W. R. Bolus, Q. Wang, Z. Brown, R. N. Pradhan, K. Tajima, T. Yoneshiro, Cell 2020, 182, 563.