Core-Shell Structured Micro-Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives
Miao Yan
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorKang Liang
School of Chemical Engineering, Graduate School of Biomedical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, 2052 Australia
Search for more papers by this authorDongyuan Zhao
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Biao Kong
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438 P. R. China
E-mail: [email protected]
Search for more papers by this authorMiao Yan
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorKang Liang
School of Chemical Engineering, Graduate School of Biomedical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, 2052 Australia
Search for more papers by this authorDongyuan Zhao
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Biao Kong
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The successful integration of well-designed micro-nanomotors (MNMs) with diverse functional systems, such as, living systems, remote actuation systems, intelligent sensors, and sensing systems, offers many opportunities to not only endow them with diverse functionalization interfaces but also bring augmented or new properties in a wide variety of applications. Core-shell structured MNM systems have been considered to play an important role in a wide range of applications as they provide a platform to integrate multiple complementary components via decoration, encapsulation, or functionalization into a single functional system, being able to protect the active species from harsh environments, and bring improved propulsion performance, stability, non-toxicity, multi-functionality, and dispersibility, etc., which are not easily available from the isolated components. More importantly, the hetero-interfaces between individual components within a core-shell structure might give rise to boosted or new physiochemical properties. This review will bring together these key aspects of the core-shell structured MNMs, ranging from advanced protocols, enhanced/novel functionalities arising from diverse functional shells, to integrated core-shell structured MNMs for diverse applications. Finally, current challenges and future perspectives for the development of core-shell structured MNMs are discussed in term of synthesis, functions, propulsions, and applications.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) Z. Guo, J. Liu, Y. Li, J. A. McDonald, M. Y. B. Zulkifli, S. J. Khan, L. Xie, Z. Gu, B. Kong, K. Liang, Chem. Commun. 2020, 56, 14837; b) T. C. Lee, M. Alarcon-Correa, C. Miksch, K. Hahn, J. G. Gibbs, P. Fischer, Nano Lett. 2014, 14, 2407; c) X. Ma, K. Hahn, S. Sanchez, J. Am. Chem. Soc. 2015, 137, 4976; d) H. Zhang, W. Duan, L. Liu, A. Sen, J. Am. Chem. Soc. 2013, 135, 15734.
- 2a) P. Mandal, V. Chopra, A. Ghosh, ACS Nano 2015, 9, 4717; b) T. R. Kline, W. F. Paxton, T. E. Mallouk, A. Sen, Angew. Chem., Int. Ed. 2005, 44, 744; c) L. Zhang, T. Petit, Y. Lu, B. E. Kratochvil, K. E. Peyer, R. Pei, J. Lou, B. J. Nelson, ACS Nano 2010, 4, 6228; d) W. Gao, S. Sattayasamitsathit, K. M. Manesh, D. Weihs, J. Wang, J. Am. Chem. Soc. 2010, 132, 14403.
- 3a) R. Liu, A. Sen, J. Am. Chem. Soc. 2011, 133, 20064; b) G. Loget, A. Kuhn, Nat. Commun. 2011, 2, 535; c) W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E. Mallouk, A. Sen, J. Am. Chem. Soc. 2006, 128, 14881.
- 4a) L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Chem. Soc. Rev. 2017, 46, 6905; b) J. Wang, Z. Xiong, X. Zhan, B. Dai, J. Zheng, J. Liu, J. Tang, Adv. Mater. 2017, 29, 1701451.
- 5a) A. L. Balk, L. O. Mair, P. P. Mathai, P. N. Patrone, W. Wang, S. Ahmed, T. E. Mallouk, J. A. Liddle, S. M. Stavis, ACS Nano 2014, 8, 8300; b) W. Wang, L. A. Castro, M. Hoyos, T. E. Mallouk, ACS Nano 2012, 6, 6122; c) T. Xu, F. Soto, W. Gao, V. Garcia-Gradilla, J. Li, X. Zhang, J. Wang, J. Am. Chem. Soc. 2014, 136, 8552; d) A. A. Solovev, E. J. Smith, C. C. Bof ‘ Bufon, S. Sanchez, O. G. Schmidt, Angew. Chem., Int. Ed. 2011, 50, 10875; e) W. Wang, S. Li, L. Mair, S. Ahmed, T. J. Huang, T. E. Mallouk, Angew. Chem., Int. Ed. 2014, 53, 3201.
- 6S. Fu, X. Zhang, Y. Xie, J. Wu, H. Ju, Nanoscale 2017, 9, 9026.
- 7a) S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao, S. Sattayasamitsathit, J. C. Claussen, A. Merkoci, J. Wang, Nano Lett. 2012, 12, 396; b) H. Eskandarloo, A. Kierulf, A. Abbaspourrad, Nanoscale 2017, 9, 13850.
- 8a) F. Soto, J. Wang, R. Ahmed, U. Demirci, Adv. Sci. 2020, 7, 2002203; b) Z. Wu, Y. Chen, D. Mukasa, O. S. Pak, W. Gao, Chem. Soc. Rev. 2020, 49, 8088; c) J. Li, B. E.-F. de Ávila, W. Gao, L. Zhang, J. Wang, Sci. Rob. 2017, 2, eaam6431; d) X. Z. Chen, M. Hoop, N. Shamsudhin, T. Huang, B. Ozkale, Q. Li, E. Siringil, F. Mushtaq, L. Di Tizio, B. J. Nelson, S. Pane, Adv. Mater. 2017, 29, 1605458; e) B. E. de Avila, P. Angsantikul, J. Li, M. A. Lopez-Ramirez, D. E. Ramirez-Herrera, S. Thamphiwatana, C. Chen, J. Delezuk, R. Samakapiruk, V. Ramez, M. Obonyo, L. Zhang, J. Wang, Nat. Commun. 2017, 8, 272.
- 9a) S. Jiang, A. Kaltbeitzel, M. Hu, O. Suraeva, D. Crespy, K. Landfester, ACS Nano 2020, 14, 498; b) H. Wang, J. G. S. Moo, M. Pumera, ACS Nano 2016, 10, 5041.
- 10a) M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, J. M. Nam, Chem. Rev. 2019, 119, 12208; b) Z. Huang, J. Gong, Z. Nie, Acc. Chem. Res. 2019, 52, 1125; c) Z. Guo, J. J. Richardson, B. Kong, K. Liang, Sci. Adv. 2020, 6, eaaz0330.
- 11a) H. Wang, L. Chen, Y. Feng, H. Chen, Acc. Chem. Res. 2013, 46, 1636; b) C. F. Hoener, K. A. Allan, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, J. M. White, J. Phys. Chem. C 1992, 96, 3812; c) I. Honma, T. Sano, H. Komiyama, J. Phys. Chem. C 1993, 97, 6692.
- 12Y. Wang, J. He, C. Liu, W. H. Chong, H. Chen, Angew. Chem., Int. Ed. 2015, 54, 2022.
- 13F. Peng, Y. Tu, D. A. Wilson, Chem. Soc. Rev. 2017, 46, 5289.
- 14B. E.-F. de Avila, W. Gao, E. Karshalev, L. Zhang, J. Wang, Acc. Chem. Res. 2018, 51, 1901.
- 15L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O. G. Schmidt, ACS Nano 2012, 6, 3383.
- 16M. Guix, J. Orozco, M. García, W. Gao, S. Sattayasamitsathit, A. Merkoçi, A. Escarpa, J. Wang, ACS Nano 2012, 6, 4445.
- 17J. Li, P. Angsantikul, W. Liu, B. E.-F. de Avila, S. Thamphiwatana, M. Xu, E. Sandraz, X. Wang, J. Delezuk, W. Gao, L. Zhang, J. Wang, Angew. Chem., Int. Ed. 2017, 56, 2156.
- 18J. Li, V. V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann, R. Dong, W. Gao, B. Jurado-Sanchez, Y. Fedorak, J. Wang, ACS Nano 2014, 8, 11118.
- 19a) W. Gao, A. Uygun, J. Wang, J. Am. Chem. Soc. 2012, 134, 897; b) K. M. Manesh, M. Cardona, R. Yuan, M. Clark, D. Kagan, S. Balasubramanian, J. Wang, ACS Nano 2010, 4, 1799.
- 20a) W. Qin, T. Peng, Y. Gao, F. Wang, X. Hu, K. Wang, J. Shi, D. Li, J. Ren, C. Fan, Angew. Chem., Int. Ed. 2017, 56, 515; b) H. Sipova-Jungova, D. Andren, S. Jones, M. Kall, Chem. Rev. 2020, 120, 269; c) M. Xuan, Z. Wu, J. Shao, L. Dai, T. Si, Q. He, J. Am. Chem. Soc. 2016, 138, 6492.
- 21B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C. C. Li, S. P. Feng, J. Tang, Nat. Nanotechnol. 2016, 11, 1087.
- 22a) D. A. Wilson, R. J. Nolte, J. C. van Hest, Nat. Chem. 2012, 4, 268; b) A. Llopis-Lorente, A. Garcia-Fernandez, E. Lucena-Sanchez, P. Diez, F. Sancenon, R. Villalonga, D. A. Wilson, R. Martinez-Manez, Chem. Commun. 2019, 55, 13164.
- 23a) J. Shao, M. Xuan, H. Zhang, X. Lin, Z. Wu, Q. He, Angew. Chem., Int. Ed. 2017, 56, 12935; b) L. Sun, Y. Yu, Z. Chen, F. Bian, F. Ye, L. Sun, Y. Zhao, Chem. Soc. Rev. 2020, 49, 4043.
- 24Z. Wu, Y. Wu, W. He, X. Lin, J. Sun, Q. He, Angew. Chem., Int. Ed. 2013, 52, 7000.
- 25D. Kagan, S. Campuzano, S. Balasubramanian, F. Kuralay, G. U. Flechsig, J. Wang, Nano Lett. 2011, 11, 2083.
- 26a) J. Orozco, G. Cheng, D. Vilela, S. Sattayasamitsathit, R. Vazquez-Duhalt, G. Valdés-Ramírez, O. S. Pak, A. Escarpa, C. Kan, J. Wang, Angew. Chem., Int. Ed. 2013, 52, 13276; b) L. Soler, V. Magdanz, V. M. Fomin, S. Sanchez, O. G. Schmidt, ACS Nano 2013, 7, 9611; c) J. Hao, W. Yang, Z. Zhang, J. Tang, Nanoscale 2015, 7, 10498; d) D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sanchez, Nano Lett. 2016, 16, 2860; e) S. K. Srivastava, M. Guix, O. G. Schmidt, Nano Lett. 2016, 16, 817.
- 27a) T. Xu, W. Gao, L.-P. Xu, X. Zhang, S. Wang, Adv. Mater. 2017, 29, 1603250; b) J. Ou, K. Liu, J. Jiang, D. A. Wilson, L. Liu, F. Wang, S. Wang, Y. Tu, F. Peng, Small 2020, 16, 1906184; c) H. Eskandarloo, A. Kierulf, A. Abbaspourrad, Nanoscale 2017, 9, 12218; d) K. Villa, M. Pumera, Chem. Soc. Rev. 2019, 48, 4966; e) C. K. Schmidt, M. Medina-Sanchez, R. J. Edmondson, O. G. Schmidt, Nat. Commun. 2020, 11, 5618; f) M. Yan, L. Xie, J. Tang, K. Liang, Y. Mei, B. Kong, Chem. Mater. 2021, 33, 3022.
- 28a) F. Han, R. Wang, Y. Feng, S. Wang, L. Liu, X. Li, Y. Han, H. Chen, Nat. Commun. 2019, 10, 1548; b) C. Li, J. Zhang, S. Wang, Z. Zhu, H. Li, A.-B. Xu, Y. Yu, X. Wang, J. Yao, L. Wang, A. A. Solovev, L. He, Chem. Mater. 2020, 32, 575; c) C. Liang, C. Zhan, F. Zeng, D. Xu, Y. Wang, W. Zhao, J. Zhang, J. Guo, H. Feng, X. Ma, ACS Appl. Mater. Interfaces 2018, 10, 35099; d) M. Liu, L. Pan, H. Piao, H. Sun, X. Huang, C. Peng, Y. Liu, ACS Appl. Mater. Interfaces 2015, 7, 26017.
- 29I. A. B. Pijpers, S. Cao, A. Llopis-Lorente, J. Zhu, S. Song, R. R. M. Joosten, F. Meng, H. Friedrich, D. S. Williams, S. Sanchez, J. C. M. van Hest, L. Abdelmohsen, Nano Lett. 2020, 20, 4472.
- 30D. Yi, Q. Zhang, Y. Liu, J. Song, Y. Tang, F. Caruso, Y. Wang, Angew. Chem., Int. Ed. 2016, 55, 14733.
- 31C. Zhou, C. Gao, Z. Lin, D. Wang, Y. Li, Y. Yuan, B. Zhu, Q. He, Langmuir 2020, 36, 7039.
- 32J. Li, S. Thamphiwatana, W. Liu, B. E.-F. de Avila, P. Angsantikul, E. Sandraz, J. Wang, T. Xu, F. Soto, V. Ramez, X. Wang, W. Gao, L. Zhang, J. Wang, ACS Nano 2016, 10, 9536.
- 33T. Chen, G. Chen, S. Xing, T. Wu, H. Chen, Chem. Mater. 2010, 22, 3826.
- 34Y. Luo, S. Geng, L. Dube, J. Zhao, J. Phys. Chem. C 2018, 122, 18077.
- 35a) X. Ma, S. Sanchez, Chem. Commun. 2015, 51, 5467; b) X. Ma, S. Sánchez, Tetrahedron 2017, 73, 4883; c) X. Ma, A. C. Hortelao, A. Miguel-Lopez, S. Sanchez, J. Am. Chem. Soc. 2016, 138, 13782.
- 36a) X. Arque, A. Romero-Rivera, F. Feixas, T. Patino, S. Osuna, S. Sanchez, Nat. Commun. 2019, 10, 2826; b) A. Llopis-Lorente, A. Garcia-Fernandez, N. Murillo-Cremaes, A. C. Hortelao, T. Patino, R. Villalonga, F. Sancenon, R. Martinez-Manez, S. Sanchez, ACS Nano 2019, 13, 12171; c) J. Sun, M. Mathesh, W. Li, D. A. Wilson, ACS Nano 2019, 13, 10191; d) T. Patino, A. Porchetta, A. Jannasch, A. Llado, T. Stumpp, E. Schaffer, F. Ricci, S. Sanchez, Nano Lett. 2019, 19, 3440.
- 37J. Orozco, V. García-Gradilla, M. D'Agostino, W. Gao, A. Cortés, J. Wang, ACS Nano 2013, 7, 818.
- 38L. Li, J. Wang, T. Li, W. Song, G. Zhang, J. Appl. Phys. 2015, 117, 104308.
- 39M. Yan, L. Xie, B. Qiu, S. Zhou, T. Liu, J. Zeng, Q. Liang, J. Tang, K. Liang, D. Zhao, B. Kong, ACS Nano 2021, 15, 11451.
- 40K. T. Kim, J. Zhu, S. A. Meeuwissen, J. J. L. M. Cornelissen, D. J. Pochan, R. J. M. Nolte, J. C. M. van Hest, J. Am. Chem. Soc. 2010, 132, 12522.
- 41S. A. Meeuwissen, K. T. Kim, Y. Chen, D. J. Pochan, J. C. van Hest, Angew. Chem., Int. Ed. 2011, 50, 7070.
- 42F. Peng, Y. Tu, Y. Men, J. C. van Hest, D. A. Wilson, Adv. Mater. 2017, 29, 1604996.
- 43L. K. Abdelmohsen, M. Nijemeisland, G. M. Pawar, G. J. Janssen, R. J. Nolte, J. C. van Hest, D. A. Wilson, ACS Nano 2016, 10, 2652.
- 44M. You, C. Chen, L. Xu, F. Mou, J. Guan, Acc. Chem. Res. 2018, 51, 3006.
- 45Z. Wu, X. Lin, Y. Wu, T. Si, J. Sun, Q. He, ACS Nano 2014, 8, 6097.
- 46Y. Wu, T. Si, X. Lin, Q. He, Chem. Commun. 2015, 51, 511.
- 47C. Zhou, H. P. Zhang, J. Tang, W. Wang, Langmuir 2018, 34, 3289.
- 48a) G. Jékely, Philos. Trans. R. Soc. London, Ser. B 2009, 364, 2795; b) D. B. Weibel, P. Garstecki, D. Ryan, W. R. DiLuzio, M. Mayer, J. E. Seto, G. M. Whitesides, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11963; c) W. Nultsch, Arch. Microbiol. 1977, 112, 179.
- 49C. Chen, F. Mou, L. Xu, S. Wang, J. Guan, Z. Feng, Q. Wang, L. Kong, W. Li, J. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1603374.
- 50Y. Tu, F. Peng, X. Sui, Y. Men, P. B. White, J. C. M. van Hest, D. A. Wilson, Nat. Chem. 2017, 9, 480.
- 51K. Xiong, L. Xu, J. Lin, F. Mou, J. Guan, Research 2020, 2020, 6213981.
- 52X. Zhang, L. Han, M. Liu, K. Wang, L. Tao, Q. Wan, Y. Wei, Mater. Chem. Front. 2017, 1, 807.
- 53Y. Tu, F. Peng, P. B. White, D. A. Wilson, Angew. Chem., Int. Ed. 2017, 56, 7620.
- 54a) E. Karshalev, Y. Zhang, B. E.-F. de Avila, M. Beltran-Gastelum, Y. Chen, R. Mundaca-Uribe, F. Zhang, B. Nguyen, Y. Tong, R. H. Fang, L. Zhang, J. Wang, Nano Lett. 2019, 19, 7816; b) B. E.-F. de Avila, D. E. Ramirez-Herrera, S. Campuzano, P. Angsantikul, L. Zhang, J. Wang, ACS Nano 2017, 11, 5367; c) M. Fernandez-Medina, X. Qian, O. Hovorka, B. Stadler, Nanoscale 2019, 11, 733; d) Z. Wu, X. Lin, X. Zou, J. Sun, Q. He, ACS Appl. Mater. Interfaces 2015, 7, 250.
- 55S. Gao, J. Hou, J. Zeng, J. J. Richardson, Z. Gu, X. Gao, D. Li, M. Gao, D. W. Wang, P. Chen, V. Chen, K. Liang, D. Zhao, B. Kong, Adv. Funct. Mater. 2019, 29, 1808900.
- 56C. Gao, Y. Wang, Z. Ye, Z. Lin, X. Ma, Q. He, Adv. Mater. 2021, 33, 2000512.
- 57Y. Tu, F. Peng, A. Adawy, Y. Men, L. K. Abdelmohsen, D. A. Wilson, Chem. Rev. 2016, 116, 2023.
- 58H. Zhang, Z. Li, Z. Wu, Q. He, Adv. Ther. 2019, 2, 1900096.
- 59F. Zhang, J. Zhuang, B. E. F. de Avila, S. Tang, Q. Zhang, R. H. Fang, L. Zhang, J. Wang, ACS Nano 2019, 13, 11996.
- 60Z. Wu, T. Li, J. Li, W. Gao, T. Xu, C. Christianson, W. Gao, M. Galarnyk, Q. He, L. Zhang, J. Wang, ACS Nano 2014, 8, 12041.
- 61Z. Wu, J. Li, B. E.-F. de Ávila, T. Li, W. Gao, Q. He, L. Zhang, J. Wang, Adv. Funct. Mater. 2015, 25, 7497.
- 62J. Shao, M. Abdelghani, G. Shen, S. Cao, D. S. Williams, J. C. M. van Hest, ACS Nano 2018, 12, 4877.
- 63J. Li, P. Angsantikul, W. Liu, B. E.-F. de Avila, X. Chang, E. Sandraz, Y. Liang, S. Zhu, Y. Zhang, C. Chen, W. Gao, L. Zhang, J. Wang, Adv. Mater. 2018, 30, 1704800.
- 64a) H. Wang, M. Pumera, Adv. Funct. Mater. 2018, 28, 1705421; b) F. Zhang, R. Mundaca-Uribe, H. Gong, B. E.-F. de Avila, M. Beltran-Gastelum, E. Karshalev, A. Nourhani, Y. Tong, B. Nguyen, M. Gallot, Y. Zhang, L. Zhang, J. Wang, Adv. Mater. 2019, 31, 1901828.
- 65Z. Wu, X. Lin, T. Si, Q. He, Small 2016, 12, 3080.
- 66B. E.-F. de Ávila, P. Angsantikul, D. E. Ramírez-Herrera, F. Soto, H. Teymourian, D. Dehaini, Y. Chen, L. Zhang, J. Wang, Sci. Rob. 2018, 3, eaat0485.
- 67Y. Alapan, O. Yasa, O. Schauer, J. Giltinan, A. F. Tabak, V. Sourjik, M. Sitti, Sci. Rob. 2018, 3, eaar4423.
- 68a) M. Gao, J. Zeng, K. Liang, D. Zhao, B. Kong, Adv. Funct. Mater. 2020, 30, 1906950; b) B. Y. Guan, S. L. Zhang, X. W. D. Lou, Angew. Chem., Int. Ed. 2018, 57, 6176; c) X. Li, L. Zhou, Y. Wei, A. M. El-Toni, F. Zhang, D. Zhao, J. Am. Chem. Soc. 2015, 137, 5903; d) L. Peng, C. T. Hung, S. Wang, X. Zhang, X. Zhu, Z. Zhao, C. Wang, Y. Tang, W. Li, D. Zhao, J. Am. Chem. Soc. 2019, 141, 7073; e) X. Ma, A. Jannasch, U. R. Albrecht, K. Hahn, A. Miguel-Lopez, E. Schaffer, S. Sanchez, Nano Lett. 2015, 15, 7043; f) M. Lian, Z. Xue, X. Qiao, C. Liu, S. Zhang, X. Li, C. Huang, Q. Song, W. Yang, X. Chen, T. Wang, Chem 2019, 5, 2378; g) Y. Zou, B. Huang, L. Cao, Y. Deng, J. Su, Adv. Mater. 2021, 33, 2005215.
- 69Y. Yang, M. Zhang, H. Song, C. Yu, Acc. Chem. Res. 2020, 53, 1545.
- 70P. Yang, S. Gai, J. Lin, Chem. Soc. Rev. 2012, 41, 3679.
- 71a) C. Argyo, V. Weiss, C. Bräuchle, T. Bein, Chem. Mater. 2014, 26, 435; b) L. Dai, Q. Zhang, J. Li, X. Shen, C. Mu, K. Cai, ACS Appl. Mater. Interfaces 2015, 7, 7357; c) X. Ma, H. Feng, C. Liang, X. Liu, F. Zeng, Y. Wang, J. Mater. Sci. Technol. 2017, 33, 1067; d) C. Gerardin, J. Reboul, M. Bonne, B. Lebeau, Chem. Soc. Rev. 2013, 42, 4217; e) F. Tang, L. Li, D. Chen, Adv. Mater. 2012, 24, 1504; f) T. Yang, L. Wei, L. Jing, J. Liang, X. Zhang, M. Tang, M. J. Monteiro, Y. I. Chen, Y. Wang, S. Gu, D. Zhao, H. Yang, J. Liu, G. Q. M. Lu, Angew. Chem., Int. Ed. 2017, 56, 8459; g) R. K. Kankala, Y.-H. Han, J. Na, C.-H. Lee, Z. Sun, S.-B. Wang, T. Kimura, Y. S. Ok, Y. Yamauchi, A.-Z. Chen, K. C. W. Wu, Adv. Mater. 2020, 32, 1907035.
- 72a) W. Wang, P. Wang, L. Chen, M. Zhao, C.-T. Hung, C. Yu, A. A. Al-Khalaf, W. N. Hozzein, F. Zhang, X. Li, D. Zhao, Chem 2020, 6, 1097; b) T. Zhao, A. Elzatahry, X. Li, D. Zhao, Nat. Rev. Mater. 2019, 4, 775.
- 73D. Shen, J. Yang, X. Li, L. Zhou, R. Zhang, W. Li, L. Chen, R. Wang, F. Zhang, D. Zhao, Nano Lett. 2014, 14, 923.
- 74P. L. Abbaraju, A. K. Meka, H. Song, Y. Yang, M. Jambhrunkar, J. Zhang, C. Xu, M. Yu, C. Yu, J. Am. Chem. Soc. 2017, 139, 6321.
- 75M. Wan, Q. Wang, X. Li, B. Xu, D. Fang, T. Li, Y. Yu, L. Fang, Y. Wang, M. Wang, F. Wang, C. Mao, J. Shen, J. Wei, Angew. Chem., Int. Ed. 2020, 59, 14458.
- 76M. Wan, Q. Wang, R. Wang, R. Wu, T. Li, D. Fang, Y. Huang, Y. Yu, L. Fang, X. Wang, Y. Zhang, Z. Miao, B. Zhao, F. Wang, C. Mao, Q. Jiang, X. Xu, D. Shi, Sci. Adv. 2020, 6, eaaz9014.
- 77M. Zhou, Y. Xing, X. Li, X. Du, T. Xu, X. Zhang, Small 2020, 16, 2003834.
- 78B. Qiu, L. Xie, J. Zeng, T. Liu, M. Yan, S. Zhou, Q. Liang, J. Tang, K. Liang, B. Kong, Adv. Funct. Mater. 2021, 31, 2010694.
- 79X. Wei, M. Beltran-Gastelum, E. Karshalev, B. E.-F. de Avila, J. Zhou, D. Ran, P. Angsantikul, R. H. Fang, J. Wang, L. Zhang, Nano Lett. 2019, 19, 1914.
- 80E. Karshalev, B. E.-F. de Avila, M. Beltran-Gastelum, P. Angsantikul, S. Tang, R. Mundaca-Uribe, F. Zhang, J. Zhao, L. Zhang, J. Wang, ACS Nano 2018, 12, 8397.
- 81J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sanchez, J. Am. Chem. Soc. 2018, 140, 9317.
- 82J. A. Delezuk, D. E. Ramirez-Herrera, B. E.-F. de Avila, J. Wang, Nanoscale 2017, 9, 2195.
- 83Z. Lin, C. Gao, D. Wang, Q. He, Angew. Chem., Int. Ed. 2021, 60, 8750.
- 84a) Y. Ge, M. Liu, L. Liu, Y. Sun, H. Zhang, B. Dong, Nano-Micro Lett. 2016, 8, 157; b) M. M. Stanton, J. Simmchen, X. Ma, A. Miguel-López, S. Sánchez, Adv. Mater. Interfaces 2016, 3, 1500505.
- 85F. Soto, D. Kupor, M. A. Lopez-Ramirez, F. Wei, E. Karshalev, S. Tang, F. Tehrani, J. Wang, Angew. Chem., Int. Ed. 2020, 59, 3480.
- 86M. Medina-Sánchez, O. G. Schmidt, Nature 2017, 545, 406.
- 87a) X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian, Y.-X. J. Wang, K. Kostarelos, L. Zhang, Sci. Rob. 2017, 2, eaaq1155;
b) D. Vilela, U. Cossío, J. Parmar, A. M. Martínez-Villacorta, V. Gómez-Vallejo, J. Llop, S. Sánchez, ACS Nano 2018, 12, 1220;
c) A. Aziz, M. Medina-Sánchez, N. Koukourakis, J. Wang, R. Kuschmierz, H. Radner, J. W. Czarske, O. G. Schmidt, Adv. Funct. Mater. 2019, 29, 1905272;
d) Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li, S.-Y. Yang, L. V. Wang, W. Gao, Sci. Rob. 2019, 4, eaax0613;
e) A. Aziz, J. Holthof, S. Meyer, O. G. Schmidt, M. Medina-Sánchez, bioRxiv 2020, 148791, https://doi.org/10.1101/2020.06.15.148791;
10.1101/2020.06.15.148791 Google Scholarf) A. C. Hortelao, C. Simó, M. Guix, S. Guallar-Garrido, E. Julián, D. Vilela, L. Rejc, P. Ramos-Cabrer, U. Cossío, V. Gómez-Vallejo, T. Patiño, J. Llop, S. Sánchez, Sci. Rob. 2021, 6, eabd2823.
- 88D. Xu, J. Hu, X. Pan, S. Sánchez, X. Yan, X. Ma, ACS Nano 2021, 15, 11543.