Direct Fabrication of Freestanding and Patterned Nanoporous Junctions in a 3D Micro-Nanofluidic Device for Ion-Selective Transport
Junhyun Kim
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673 South Korea
Search for more papers by this authorSang Min Park
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673 South Korea
Search for more papers by this authorDongwhi Choi
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673 South Korea
Search for more papers by this authorCorresponding Author
Dong Sung Kim
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673 South Korea
E-mail: [email protected]
Search for more papers by this authorJunhyun Kim
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673 South Korea
Search for more papers by this authorSang Min Park
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673 South Korea
Search for more papers by this authorDongwhi Choi
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673 South Korea
Search for more papers by this authorCorresponding Author
Dong Sung Kim
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673 South Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
In the field of micro-nanofluidics, a freestanding configuration of a nanoporous junction is highly demanded to increase the design flexibility of the microscale device and the interfacial area between the nanoporous junction and microchannels, thereby improving the functionality and performance. This work first reports direct fabrication and incorporation of a freestanding nanoporous junction in a microfluidic device by performing an electrolyte-assisted electrospinning process to fabricate a freestanding nanofiber membrane and subsequently impregnating the nanofiber membrane with a nanoporous precursor material followed by a solidification process. This process also enables to readily control the geometry of the nanoporous junction depending on its application. By these advantages, vertically stacked 3D micro-nanofluidic devices with complex configurations are easily achieved. To demonstrate the broad applicability of this process in various research fields, a reverse electrodialysis-based energy harvester and an ion concentration polarization-based preconcentrator are produced. The freestanding Nafion-polyvinylidene fluoride nanofiber membrane (F-NPNM) energy harvester generates a high power (59.87 nW) owing to the enlarged interfacial area. Besides, 3D multiplexed and multi-stacked F-NPNM preconcentrators accumulate multiple preconcentrated plugs that can increase the operating sample volume and the degree of freedom of handling. Hence, the proposed process is expected to contribute to numerous research fields related to micro-nanofluidics in the future.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202000998-sup-0001-SuppMat.pdf685.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Sparreboom, A. van den Berg, J. C. Eijkel, Nat. Nanotechnol. 2009, 4, 713.
- 2D. Mijatovic, J. C. Eijkel, A. van den Berg, Lab Chip 2005, 5, 492.
- 3L. Bocquet, E. Charlaix, Chem. Soc. Rev. 2010, 39, 1073.
- 4Z. S. Siwy, Adv. Funct. Mater. 2006, 16, 735.
- 5W.-J. Lan, C. Kubeil, J.-W. Xiong, A. Bund, H. S. White, J. Phys. Chem. C 2014, 118, 2726.
- 6Y. L. Ying, Y. X. Hu, R. Gao, R. J. Yu, Z. Gu, L. P. Lee, Y. T. Long, J. Am. Chem. Soc. 2018, 140, 5385.
- 7S.-M. Lu, Y.-T. Long, TrAC, Trends Anal. Chem. 2019, 117, 39.
- 8S. J. Kim, Y.-A. Song, J. Han, Chem. Soc. Rev. 2010, 39, 912.
- 9Z. Zhang, X. Y. Kong, K. Xiao, G. Xie, Q. Liu, Y. Tian, H. Zhang, J. Ma, L. Wen, L. Jiang, Adv. Mater. 2016, 28, 144.
- 10H. Daiguji, P. Yang, A. Majumdar, Nano Lett. 2004, 4, 137.
- 11A. Piruska, M. Gong, J. V. Sweedler, P. W. Bohn, Chem. Soc. Rev. 2010, 39, 1060.
- 12D. Choi, A. Choi, D. S. Kim, Int. J. Precis. Eng. Manuf. 2015, 16, 1467.
- 13D. Cohen-Tanugi, J. C. Grossman, Nano Lett. 2012, 12, 3602.
- 14R. Das, M. E. Ali, S. B. A. Hamid, S. Ramakrishna, Z. Z. Chowdhury, Desalination 2014, 336, 97.
- 15J. W. Post, H. V. Hamelers, C. J. Buisman, Environ. Sci. Technol. 2008, 42, 5785.
- 16H. Daiguji, Y. Oka, K. Shirono, Nano Lett. 2005, 5, 2274.
- 17J. T. Coleman, J. McKechnie, D. Sinton, Lab Chip 2006, 6, 1033.
- 18D. Kim, A. Raj, L. Zhu, R. I. Masel, M. A. Shannon, Lab Chip 2008, 8, 625.
- 19J. Han, H. G. Craighead, Science 2000, 288, 1026.
- 20S. H. Ko, Y. A. Song, S. J. Kim, M. Kim, J. Han, K. H. Kang, Lab Chip 2012, 12, 4472.
- 21S.-H. Yeh, K.-H. Chou, R.-J. Yang, Lab Chip 2016, 16, 925.
- 22S. J. Kim, S. H. Ko, K. H. Kang, J. Han, Nat. Nanotechnol. 2010, 5, 297.
- 23S. Park, Y. Jung, S. Y. Son, I. Cho, Y. Cho, H. Lee, H.-Y. Kim, S. J. Kim, Nat. Commun. 2016, 7, 11223.
- 24K. Kwon, S. J. Lee, L. Li, C. Han, D. Kim, Int. J. Energy Res. 2014, 38, 530.
- 25S. Lee, H. Kim, D.-K. Kim, Energies 2016, 9, 49.
- 26J. Heo, H. J. Kwon, H. Jeon, B. Kim, S. J. Kim, G. Lim, Nanoscale 2014, 6, 9681.
- 27C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, H. Craighead, Biophys. J. 2008, 95, 273.
- 28Q. Xia, K. J. Morton, R. H. Austin, S. Y. Chou, Nano Lett. 2008, 8, 3830.
- 29M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, Appl. Phys. Lett. 2004, 84, 5299.
- 30S. Wang, Y. Liu, P. Ge, Q. Kan, N. Yu, J. Wang, J. Nan, S. Ye, J. Zhang, W. Xu, Lab Chip 2018, 18, 979.
- 31D. Huh, K. Mills, X. Zhu, M. A. Burns, M. Thouless, S. Takayama, Nat. Mater. 2007, 6, 424.
- 32S. Chung, J. H. Lee, M. W. Moon, J. Han, R. D. Kamm, Adv. Mater. 2008, 20, 3011.
- 33E. Choi, K. Kwon, D. Kim, J. Park, Lab Chip 2015, 15, 512.
- 34J. Lee, M. Kim, J. Park, T. Kim, Lab Chip 2016, 16, 1072.
- 35S. J. Kim, J. Han, Anal. Chem. 2008, 80, 3507.
- 36S. H. Ko, S. J. Kim, L. F. Cheow, L. D. Li, K. H. Kang, J. Han, Lab Chip 2011, 11, 1351.
- 37Y. Oh, H. Lee, S. Y. Son, S. J. Kim, P. Kim, Biomicrofluidics 2016, 10, 014102.
- 38R. Dhopeshwarkar, R. M. Crooks, D. Hlushkou, U. Tallarek, Anal. Chem. 2008, 80, 1039.
- 39T.-C. Kuo, D. M. Cannon, Y. Chen, J. J. Tulock, M. A. Shannon, J. V. Sweedler, P. W. Bohn, Anal. Chem. 2003, 75, 1861.
- 40E. N. Gatimu, J. V. Sweedler, P. W. Bohn, Analyst 2006, 131, 705.
- 41T. C. Kuo, H. K. Kim, D. M. Cannon Jr, M. A. Shannon, J. V. Sweedler, P. W. Bohn, Angew. Chem., Int. Ed. 2004, 43, 1862.
- 42B. Y. Kim, J. Yang, M. Gong, B. R. Flachsbart, M. A. Shannon, P. W. Bohn, J. V. Sweedler, Anal. Chem. 2009, 81, 2715.
- 43S. Jeon, V. Malyarchuk, J. O. White, J. A. Rogers, Nano Lett. 2005, 5, 1351.
- 44W. Guo, C. Cheng, Y. Wu, Y. Jiang, J. Gao, D. Li, L. Jiang, Adv. Mater. 2013, 25, 6064.
- 45K. Xiao, P. Giusto, L. Wen, L. Jiang, M. Antonietti, Angew. Chem., Int. Ed. 2018, 57, 10123.
- 46H.-K. Chang, E. Choi, J. Park, Lab Chip 2016, 16, 700.
- 47S. M. Park, D. S. Kim, Adv. Mater. 2015, 27, 1682.
- 48S. M. Park, S. Eom, W. Kim, D. S. Kim, Langmuir 2018, 34, 284.
- 49S. M. Park, S. Eom, D. Choi, S. J. Han, S. J. Park, D. S. Kim, Chem. Eng. J. 2018, 335, 712.
- 50J. W. Park, R. Wycisk, P. N. Pintauro, J. Membr. Sci. 2015, 490, 103.
- 51H.-Y. Li, Y.-L. Liu, J. Mater. Chem. A 2014, 2, 3783.
- 52S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, E. J. Cairns, Chem. Mater. 2007, 19, 104.
- 53M. A. Kader, S. K. Kwak, S. L. Kang, J. H. Ahn, C. Nah, Polym. Int. 2008, 57, 1199.
- 54K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535.
- 55F. I. Allen, L. R. Comolli, A. Kusoglu, M. A. Modestino, A. M. Minor, A. Z. Weber, ACS Macro Lett. 2015, 4, 1.
- 56J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, Y. Chen, J. Membr. Sci. 2015, 486, 71.
- 57Y. Mei, C. Y. Tang, Desalination 2018, 425, 156.
- 58R. B. Schoch, P. Renaud, Appl. Phys. Lett. 2005, 86, 253111.
- 59A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, L. Bocquet, Nature 2013, 494, 455.
- 60D. Stein, M. Kruithof, C. Dekker, Phys. Rev. Lett. 2004, 93, 035901.
- 61E. Choi, K. Kwon, D. Kim, J. Park, Lab Chip 2015, 15, 168.
- 62L. Cao, W. Guo, W. Ma, L. Wang, F. Xia, S. Wang, Y. Wang, L. Jiang, D. Zhu, Energy Environ. Sci. 2011, 4, 2259.
- 63J. Hwang, S. Kataoka, A. Endo, H. Daiguji, Lab Chip 2016, 16, 3824.
- 64X. Yuan, L. Renaud, M. C. Audry, P. Kleimann, Anal. Chem. 2015, 87, 8695.