Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector
Nana Liu
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
Search for more papers by this authorHui Qiao
Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105 China
Search for more papers by this authorKang Xu
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorYilian Xi
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorLong Ren
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorNingyan Cheng
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
Search for more papers by this authorDandan Cui
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorCorresponding Author
Xiang Qi
Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105 China
E-mail: [email protected], [email protected]
Search for more papers by this authorXun Xu
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorWeichang Hao
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorShi Xue Dou
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorCorresponding Author
Yi Du
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
E-mail: [email protected], [email protected]
Search for more papers by this authorNana Liu
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
Search for more papers by this authorHui Qiao
Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105 China
Search for more papers by this authorKang Xu
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorYilian Xi
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorLong Ren
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorNingyan Cheng
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
Search for more papers by this authorDandan Cui
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorCorresponding Author
Xiang Qi
Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105 China
E-mail: [email protected], [email protected]
Search for more papers by this authorXun Xu
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorWeichang Hao
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorShi Xue Dou
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
Search for more papers by this authorCorresponding Author
Yi Du
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500 Australia
BUAA-UOW Joint Research Centre, School of Physics, Beihang University, Beijing, 100091 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
As a rising star in the family of graphene analogues, germanene shows great potential for electronic and optical device applications due to its unique structure and electronic properties. It is revealed that the hydrogen terminated germanene not only maintains a high carrier mobility similar to that of germanene, but also exhibits strong light–matter interaction with a direct band gap, exhibiting great potential for photoelectronics. In this work, few-layer germanane (GeH) nanosheets with controllable thickness are successfully synthesized by a solution-based exfoliation–centrifugation route. Instead of complicated microfabrication techniques, a robust photoelectrochemical (PEC)-type photodetector, which can be extended to flexible device, is developed by simply using the GeH nanosheet film as an active electrode. The device exhibits an outstanding photocurrent density of 2.9 µA cm−2 with zero bias potential, excellent responsivity at around 22 µA W−1 under illumination with intensity ranging from 60 to 140 mW cm−2, as well as short response time (with rise and decay times, tr = 0.24 s and td = 0.74 s). This efficient strategy for a constructing GeH-based PEC-type photodetector suggests a path to promising high-performance, self-powered, flexible photodetectors, and it also paves the way to a practical application of germanene.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202000283-sup-0001-SuppMat.pdf1,004.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Mueller, F. N. Xia, Nat. Photonics 2010, 4, 297.
- 2Z. Q. Zhou, M. S. Long, L. F. Pan, X. T. Wang, M. Z. Zhong, M. Blei, J. L. Wang, J. Z. Fang, A. Tongay, W. D. Hu, J. B. Lo, Z. M. Wei, ACS Nano 2018, 12, 12416.
- 3L.-S. Oriol, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotech. 2013, 8, 497.
- 4F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Nat. Nanotechnol. 2014, 9, 780.
- 5S. V. Boriskina, J. K. Tong, W.-C. Hsu, L. Weinstein, X. P. Huang, J. Loomis, Y. F. Xu, G. Chen, Proc. SPIE Int. Soc. Opt. Eng. 2015, 9546, 95461U.
- 6K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, T. Chang, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 7A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, Nano Lett. 2011, 11, 2396.
- 8X. T. Gan, R.-J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Nat. Photonics 2013, 7, 883.
- 9N. Youngblood, C. Chen, S. J. Koester, M. Li, Nat. Photonics 2015, 9, 247.
- 10W. Tao, N. Kong, X. Y. Ji, Y. P. Zhang, A. Sharma, J. Ouyang, B. W. Qi, J. Q. Wang, N. Xie, C. H. Kang, H. Zhang, O. C. Farokhzad, J. S. Kim, Chem. Soc. Rev. 2019, 48, 2891.
- 11Z. Y. Ni, Q. H. Liu, K. C. Tang, J. X. Zheng, J. Zhou, R. Qin, Z. X. Gao, D. P. Yu, J. Lu, Nano Lett. 2012, 12, 113.
- 12H. Y. Ye, F. F. Hu, H. Y. Tang, L. W. Yang, X. P. Chen, L. G. Wang, G. Q. Zhang, Phys. Chem. Chem. Phys. 2018, 20, 16067.
- 13S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Small 2015, 11, 640.
- 14X. P. Chen, Q. Yang, R. S. Meng, J. K. Jiang, Q. H. Liang, C. J. Tan, X. Sun, J. Mater. Chem. C 2016, 4, 5434.
- 15X. P. Chen, X. Sun, J. K. Jiang, Q. H. Liang, Q. Yang, R. S. Meng, J. Phys. Chem. C 2016, 120, 20350.
- 16J. C. Zhuang, C. Liu, Z. Y. Zhou, G. Casillas, H. F. Feng, X. Xu, J. O. Wang, W. C. Hao, X. L. Wang, S. X. Dou, Z. P. Hu, Y. Du, Adv. Sci. 2018, 5, 1800207.
- 17L. L. Li, S.-Z. Lu, J. B. Pan, Z. H. Qin, Y.-Q. Wang, Y. L. Wang, G.-Y. Cao, S. X. Du, H.-J. Gao, Adv. Mater. 2014, 26, 4820.
- 18M. Derivaz, D. Dentel, R. Stephan, M. C. Hanf, A. Mehdaoui, P. Sonnet, C. Pirri, Nano Lett. 2015, 15, 2510.
- 19M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, New J. Phys. 2014, 16, 095002.
- 20N. N. Liu, G. Y. Bo, Y. N. Liu, X. Xu, Y. Du, S. X. Dou, Small 2019, 15, 1805147.
- 21E. Bianco, S. Butler, S. S. Jiang, O. D. Restrepo, W. Windl, J. E. Goldberger, ACS Nano 2013, 7, 4414.
- 22G. Vogg, M. S. Brandt, M. Stutzmann, Adv. Mater. 2000, 12, 1278.
- 23J. C. Zhuang, N. Gao, Z. Li, X. Xu, J. O. Wang, J. J. Zhao, S. X. Dou, Y. Du, ACS Nano 2017, 11, 3553.
- 24N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. Hong, Z. L. Wang, R. L. Snyder, ACS Nano 2010, 4, 3807.
- 25M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, Nat. Photonics 2013, 7, 466.
- 26J. Tauc, Mater. Res. Bull. 1968, 3, 37.
- 27W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, L. B. Luo, Adv. Mater. 2016, 28, 10725.
- 28M. Hafeez, L. Gan, H. Q. Li, Y. Ma, T. Y. Zhai, Adv. Mater. 2016, 28, 8296.
- 29M. J. Dai, H. Y. Chen, F. K. Wang, Y. X. Hu, S. Wei, J. Zhang, Z. G. Wang, T. Y. Zhai, P. A. Hu, ACS Nano 2019, 13, 7291.
- 30W. C. Huang, Y. Zhang, Q. You, P. Huang, Y. Z. Wang, Z. N. Huang, Y. Q. Ge, L. M. Wu, Z. J. Dong, X. Y. Dai, Y. J. Xiang, J. Q. Li, X. W. Zhang, H. Zhang, Small 2019, 15, 1900902.
- 31Z. J. Li, H. Qiao, Z. N. Guo, X. H. Ren, Z. Y. Huang, X. Qi, S. C. Dhanabalan, J. S. Ponraj, D. Zhang, J. Q. Li, J. L. Zhao, J. X. Zhong, H. Zhang, Adv. Funct. Mater. 2018, 28, 1705237.
- 32M. Z. Wang, F. X. Liang, B. Nie, L. H. Zeng, L. X. Zheng, P. Lv, Y. Q. Yu, C. Xie, Y. Y. Li, L. B. Luo, Part. Part. Syst. Charact. 2013, 30, 630.
- 33S. M. Hatch, J. Briscoe, S. Dunn, Adv. Mater. 2013, 25, 867.
- 34L. B. Luo, F. X. Liang, J. S. Jie, Nanotechnology 2011, 22, 485701.
- 35H. F. Feng, J. C. Zhuang, A. D. Slattery, L. Wang, Z. F. Xu, X. Xu, D. Mitchell, T. Zheng, S. L. Li, M. Higgins, L. Ren, Z. Q. Sun, S. X. Dou, Y. Du, W. C. Hao, 2D Mater. 2017, 4, 025102.
10.1088/2053-1583/aa7100 Google Scholar
- 36D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, W. H. Tang, Appl. Phys. Lett. 2014, 105, 023507.
- 37D. Y. Guo, Z. P. Wu, P. G. Li, Y. H. An, H. Liu, X. C. Guo, H. Yan, G. F. Wang, C. L. Sun, L. H. Li, W. H. Tang, Opt. Mater. Express 2014, 4, 1067.
- 38S. C. Dhanabalan, J. S. Ponraj, H. Zhang, Q. L. Bao, Nanoscale 2016, 8, 6410.
- 39S. Liu, J. F. Ye, Y. Cao, Q. Shen, Z. F. Liu, L. M. Qi, X. F. Guo, Small 2009, 5, 2371.
- 40B. Yao, J. Zhang, X. Fan, J. He, Y. Li, Small 2019, 15, 1803746.
- 41Y. F. Sun, H. Cheng, S. Gao, Z. H. Sun, Q. H. Liu, Q. Liu, F. C. Lei, T. Yao, J. F. He, S. Q. Wei, Y. Xie, Angew. Chem., Int. Ed. 2012, 51, 8727.
- 42G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 43G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251.
- 44G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 45G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 46P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 47G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 48J. Uddin, G. E. Scuseria, Phys. Rev. B 2006, 74, 245115.