Electron-Deficient and Quinoid Central Unit Engineering for Unfused Ring-Based A1–D–A2–D–A1-Type Acceptor Enables High Performance Nonfullerene Polymer Solar Cells with High Voc and PCE Simultaneously
Chao Zhang
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorXin Song
King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center, Thuwal, 23955-6900 Saudi Arabia
Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorKai-Kai Liu
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorMing Zhang
Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240 China
Search for more papers by this authorJianfei Qu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCan Yang
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorGui-Zhou Yuan
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorAsif Mahmood
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Feng Liu
Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorFeng He
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Derya Baran
King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center, Thuwal, 23955-6900 Saudi Arabia
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jin-Liang Wang
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorChao Zhang
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorXin Song
King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center, Thuwal, 23955-6900 Saudi Arabia
Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorKai-Kai Liu
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorMing Zhang
Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240 China
Search for more papers by this authorJianfei Qu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCan Yang
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorGui-Zhou Yuan
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorAsif Mahmood
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Feng Liu
Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorFeng He
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Derya Baran
King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center, Thuwal, 23955-6900 Saudi Arabia
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jin-Liang Wang
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Here, a pair of A1–D–A2–D–A1 unfused ring core-based nonfullerene small molecule acceptors (NF-SMAs), BO2FIDT-4Cl and BT2FIDT-4Cl is synthesized, which possess the same terminals (A1) and indacenodithiophene unit (D), coupling with different fluorinated electron-deficient central unit (difluorobenzoxadiazole or difluorobenzothiadiazole) (A2). BT2FIDT-4Cl exhibits a slightly smaller optical bandgap of 1.56 eV, upshifted highest occupied molecular orbital energy levels, much higher electron mobility, and slightly enhanced molecular packing order in neat thin films than that of BO2FIDT-4Cl. The polymer solar cells (PSCs) based on BT2FIDT-4Cl:PM7 yield the best power conversion efficiency (PCE) of 12.5% with a Voc of 0.97 V, which is higher than that of BO2FIDT-4Cl-based devices (PCE of 10.4%). The results demonstrate that the subtle modification of A2 unit would result in lower trap-assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT-4Cl blend films. It is worth mentioning that the PCE of 12.5% is the highest value in nonfused ring NF-SMA-based binary PSCs with high Voc over 0.90 V. These results suggest that appropriate modulation of the quinoid electron-deficient central unit is an effective approach to construct highly efficient unfused ring NF-SMAs to boost PCE and Voc simultaneously.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201907681-sup-0001-SuppMat.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Science 2018, 361, 1094.
- 2C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Nat. Rev. Mater. 2018, 3, 18003.
- 3G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447.
- 4P. Cheng, G. Li, X. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131.
- 5C. Li, H. Fu, T. Xia, Y. Sun, Adv. Energy Mater. 2019, 9, 1900999.
- 6L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L. Yu, Chem. Rev. 2015, 115, 12666.
- 7A. Wadsworth, M. Moser, A. Marks, M. S. Little, N. Gasparini, C. J. Brabec, D. Baran, I. McCulloch, Chem. Soc. Rev. 2019, 48, 1596.
- 8N. Gasparini, A. Salleo, I. McCulloch, D. Baran, Nat. Rev. Mater. 2019, 4, 229.
- 9J. Hou, O. Inganas, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119.
- 10S. Dey, Small 2019, 15, 1900134.
- 11Y. Li, Acc. Chem. Res. 2012, 45, 723.
- 12C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qiu, Z. Wei, Z.-G. Zhang, Y. Li, Nat. Commun. 2018, 9, 743.
- 13D. Meng, G. Liu, C. Xiao, Y. Shi, L. Zhang, L. Jiang, K. K. Baldridge, Y. Li, J. S. Siegel, Z. Wang, J. Am. Chem. Soc. 2019, 141, 5402.
- 14H. Yao, F. Bai, H. Hu, L. Arunagiri, J. Zhang, Y. Chen, H. Yu, S. Chen, T. Liu, J. Y. L. Lai, Y. Zou, H. Ade, H. Yan, ACS Energy Lett. 2019, 4, 417.
- 15X. Li, Y. Wang, Q. Zhu, X. Guo, W. Ma, X. Ou, M. Zhang, Y. Li, J. Mater. Chem. A 2019, 7, 3682.
- 16B. Huang, L. Hu, L. Chen, S. Chen, M. Hu, Y. Zhou, Y. Zhang, C. Yang, Y. Chen, J. Mater. Chem. A 2019, 7, 4847.
- 17Y. Li, N. Zheng, L. Yu, S. Wen, C. Gao, M. Sun, R. Yang, Adv. Mater. 2019, 31, 1807832.
- 18Q. Zhao, Z. Xiao, J. Qu, L. Liu, H. Richter, W. Chen, L. Han, M. Wang, J. Zheng, Z. Xie, L. Ding, F. He, ACS Energy Lett. 2019, 4, 1106.
- 19B. Guo, W. Li, G. Luo, X. Guo, H. Yao, M. Zhang, J. Hou, Y. Li, W.-Y. Wong, ACS Energy Lett. 2018, 3, 2566.
- 20R. Geng, X. Song, H. Feng, J. Yu, M. Zhang, N. Gasparini, Z. Zhang, F. Liu, D. Baran, W. Tang, ACS Energy Lett. 2019, 4, 763.
- 21M. Hao, T. Liu, Y. Xiao, L.-K. Ma, G. Zhang, C. Zhong, Z. Chen, Z. Luo, X. Lu, H. Yan, L. Wang, C. Yang, Chem. Mater. 2019, 31, 1752.
- 22J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140.
- 23A. Karki, J. Vollbrecht, A. L. Dixon, N. Schopp, M. Schrock, G. N. M. Reddy, T.-Q. Nguyen, Adv. Mater. 2019, 31, 1903868.
- 24J.-L. Wang, K.-K. Liu, J. Yan, Z. Wu, F. Liu, F. Xiao, Z.-F. Chang, H.-B. Wu, Y. Cao, T. P. Russell, J. Am. Chem. Soc. 2016, 138, 7687.
- 25Y. Wu, S. Schneider, C. Walter, A. H. Chowdhury, B. Bahrami, H.-C. Wu, Q. Qiao, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2020, 142, 392.
- 26S.-S. Wan, X. Xu, Z. Jiang, J. Yuan, A. Mahmood, G.-Z. Yuan, K.-K. Liu, W. Ma, Q. Peng, J.-L. Wang, J. Mater. Chem. A 2020, 8, 4856.
- 27A. Tang, W. Song, B. Xiao, J. Guo, J. Min, Z. Ge, J. Zhang, Z. Wei, E. Zhou, Chem. Mater. 2019, 31, 3941.
- 28Y. Chen, X. Jiang, X. Chen, J. Zhou, A. Tang, Y. Geng, Q. Guo, E. Zhou, Macromolecules 2019, 52, 8625.
- 29H. Sun, T. Liu, J. Yu, T.-K. Lau, G. Zhang, Y. Zhang, M. Su, Y. Tang, R. Ma, B. Liu, J. Liang, K. Feng, X. Lu, X. Guo, F. Gao, H. Yan, Energy Environ. Sci. 2019, 12, 3328.
- 30Y. Ma, X. Zhou, D. Cai, Q. Tu, W. Ma, Q. Zheng, Mater. Horiz. 2020, 7, 117.
- 31Q. An, X. Ma, J. Gao, F. Zhang, Sci. Bull. 2019, 64, 504.
- 32X. Xu, K. Feng, Z. Bi, W. Ma, G. Zhang, Q. Peng, Adv. Mater. 2019, 31, 1901872.
- 33B. Fan, D. Zhang, M. Li, W. Zhong, Z. Zeng, L. Ying, F. Huang, Y. Cao, Sci. China: Chem. 2019, 62, 746.
- 34Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Nat. Commun. 2019, 10, 2515.
- 35T. Yan, W. Song, J. Huang, R. Peng, L. Huang, Z. Ge, Adv. Mater. 2019, 31, 1902210.
- 36M.-A. Pan, T.-K. Lau, Y. Tang, Y.-C. Wu, T. Liu, K. Li, M.-C. Chen, X. Lu, W. Ma, C. Zhan, J. Mater. Chem. A 2019, 7, 20713.
- 37J. Xiong, K. Jin, Y. Jiang, J. Qin, T. Wang, J. Liu, Q. Liu, H. Peng, X. Li, A. Sun, X. Meng, L. Zhang, L. Liu, W. Li, Z. Fang, X. Jia, Z. Xiao, Y. Feng, X. Zhang, K. Sun, S. Yang, S. Shi, L. Ding, Sci. Bull. 2019, 64, 1573.
- 38Y. Wu, Y. Zheng, H. Yang, C. Sun, Y. Dong, C. Cui, H. Yan, Y. Li, Sci. China: Chem. 2020, 63, 265.
- 39K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, H. Yan, Joule 2019, 3, 3020.
- 40J. Song, C. Li, L. Zhu, J. Guo, J. Xu, X. Zhang, K. Weng, K. Zhang, J. Min, X. Hao, Y. Zhang, F. Liu, Y. Sun, Adv. Mater. 2019, 31, 1905645.
- 41Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170.
- 42W. Li, M. Chen, J. Cai, E. L. K. Spooner, H. Zhang, R. S. Gurney, D. Liu, Z. Xiao, D. G. Lidzey, L. Ding, T. Wang, Joule 2019, 3, 819.
- 43Y. Wang, B. Liu, C. W. Koh, X. Zhou, H. Sun, J. Yu, K. Yang, H. Wang, Q. Liao, H. Y. Woo, X. Guo, Adv. Energy Mater. 2019, 9, 1803976.
- 44F. Lin, L. Zuo, K. Gao, M. Zhang, S. B. Jo, F. Liu, A. K. Y. Jen, Chem. Mater. 2019, 31, 6770.
- 45Y. Li, J. D. Lin, X. Che, Y. Qu, F. Liu, L. S. Liao, S. R. Forrest, J. Am. Chem. Soc. 2017, 139, 17114.
- 46X. Chen, H. Liu, L. Xia, T. Hayat, A. Alsaedi, Z. Tan, Chem. Commun. 2019, 55, 7057.
- 47J.-L. Wang, K.-K. Liu, L. Hong, G.-Y. Ge, C. Zhang, J. Hou, ACS Energy Lett. 2018, 3, 2967.
- 48S. L. Chang, K. E. Hung, F. Y. Cao, K. H. Huang, C. S. Hsu, C. Y. Liao, C. H. Lee, Y. J. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 33179.
- 49J. Qu, Q. Zhao, J. Zhou, H. Lai, T. Liu, D. Li, W. Chen, Z. Xie, F. He, Chem. Mater. 2019, 31, 1664.
- 50D. He, F. Zhao, J. Xin, J. J. Rech, Z. Wei, W. Ma, W. You, B. Li, L. Jiang, Y. Li, C. Wang, Adv. Energy Mater. 2018, 8, 1802050.
- 51S. Dai, F. Zhao, Q. Zhang, T. K. Lau, T. Li, K. Liu, Q. Ling, C. Wang, X. Lu, W. You, X. Zhan, J. Am. Chem. Soc. 2017, 139, 1336.
- 52F. Wu, L. Zhong, H. Hu, Y. Li, Z. Zhang, Y. Li, Z.-G. Zhang, H. Ade, Z.-Q. Jiang, L.-S. Liao, J. Mater. Chem. A 2019, 7, 4063.
- 53W. Peng, G. Zhang, L. Shao, C. Ma, B. Zhang, W. Chi, Q. Peng, W. Zhu, J. Mater. Chem. A 2018, 6, 24267.
- 54D. Liu, B. Kan, X. Ke, N. Zheng, Z. Xie, D. Lu, Y. Liu, Adv. Energy Mater. 2018, 8, 1801618.
- 55Y.-Q.-Q. Yi, H. Feng, N. Zheng, X. Ke, B. Kan, M. Chang, Z. Xie, X. Wan, C. Li, Y. Chen, Chem. Mater. 2019, 31, 904.
- 56M. Privado, V. Cuesta, P. de la Cruz, M. L. Keshtov, R. Singhal, G. D. Sharmad, F. Langa, ACS Appl. Mater. Interfaces 2017, 9, 11739.
- 57Y. Liu, Z. Zhang, S. Feng, M. Li, L. Wu, R. Hou, X. Xu, X. Chen, Z. Bo, J. Am. Chem. Soc. 2017, 139, 3356.
- 58S. Li, L. Zhan, W. Zhao, S. Zhang, B. Ali, Z. Fu, T.-K. Lau, X. Lu, M. Shi, C.-Z. Li, J. Hou, H. Chen, J. Mater. Chem. A 2018, 6, 12132.
- 59Z. P. Yu, Z. X. Liu, F. X. Chen, R. Qin, T. K. Lau, J. L. Yin, X. Kong, X. Lu, M. Shi, C. Z. Li, H. Chen, Nat. Commun. 2019, 10, 2152.
- 60R. Qin, W. Yang, S. Li, T.-K. Lau, Z. Yu, Z. Liu, M. Shi, X. Lu, C.-Z. Li, H. Chen, Mater. Chem. Front. 2019, 3, 513.
- 61S. Li, L. Zhan, T. K. Lau, Z. P. Yu, W. Yang, T. R. Andersen, Z. Fu, C. Z. Li, X. Lu, M. Shi, H. Chen, Small Methods 2019, 3, 1900531.
- 62S. Li, L. Zhan, F. Liu, J. Ren, M. Shi, C. Z. Li, T. P. Russell, H. Chen, Adv. Mater. 2018, 30, 1705208.
- 63H. Huang, Q. Guo, S. Feng, C. Zhang, Z. Bi, W. Xue, J. Yang, J. Song, C. Li, X. Xu, Z. Tang, W. Ma, Z. Bo, Nat. Commun. 2019, 10, 3038.
- 64J. Lee, S.-J. Ko, M. Seifrid, H. Lee, C. McDowell, B. R. Luginbuhl, A. Karki, K. Cho, T.-Q. Nguyen, G. C. Bazan, Adv. Energy Mater. 2018, 8, 1801209.
- 65X. Song, N. Gasparini, L. Ye, H. Yao, J. Hou, H. Ade, D. Baran, ACS Energy Lett. 2018, 3, 669.
- 66W. Wang, B. Zhao, Z. Cong, Y. Xie, H. Wu, Q. Liang, S. Liu, F. Liu, C. Gao, H. Wu, Y. Cao, ACS Energy Lett. 2018, 3, 1499.
- 67Y. Liu, M. Li, X. Zhou, Q.-Q. Jia, S. Feng, P. Jiang, X. Xu, W. Ma, H.-B. Li, Z. Bo, ACS Energy Lett. 2018, 3, 1832.
- 68Y. Liu, C. Zhang, D. Hao, Z. Zhang, L. Wu, M. Li, S. Feng, X. Xu, F. Liu, X. Chen, Z. Bo, Chem. Mater. 2018, 30, 4307.
- 69W. Zhong, J. Cui, B. Fan, L. Ying, Y. Wang, X. Wang, G. Zhang, X.-F. Jiang, F. Huang, Y. Cao, Chem. Mater. 2017, 29, 8177.
- 70B. Fan, W. Zhong, X.-F. Jiang, Q. Yin, L. Ying, F. Huang, Y. Cao, Adv. Energy Mater. 2017, 7, 1602127.
- 71L. Yang, W. Gu, Y. Yang, L. Hong, X. Zhang, Y. Xiao, X. Wu, A. Peng, H. Huang, Small Methods 2018, 2, 1700330.
- 72S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou, W. Yang, M. Shi, C. Z. Li, J. Hou, Y. Li, H. Chen, J. Am. Chem. Soc. 2019, 141, 3073.
- 73S. H. Park, G. E. Park, S. Choi, Y. U. Kim, S. Y. Park, C. G. Park, M. J. Cho, D. H. Choi, J. Mater. Chem. C 2018, 6, 7549.
- 74J. H. Dou, Y. Q. Zheng, Z. F. Yao, Z. A. Yu, T. Lei, X. Shen, X. Y. Luo, J. Sun, S. D. Zhang, Y. F. Ding, G. Han, Y. Yi, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2015, 137, 15947.
- 75R. Zhou, B. Xia, H. Li, Z. Wang, Y. Yang, J. Zhang, B. W. Laursen, K. Lu, Z. Wei, Front. Chem. 2018, 6, 384.
- 76T. J. Aldrich, M. Matta, W. Zhu, S. M. Swick, C. L. Stern, G. C. Schatz, A. Facchetti, F. S. Melkonyan, T. J. Marks, J. Am. Chem. Soc. 2019, 141, 3274.
- 77X. Liu, L. Nian, K. Gao, L. Zhang, L. Qing, Z. Wang, L. Ying, Z. Xie, Y. Ma, Y. Cao, F. Liu, J. Chen, J. Mater. Chem. A 2017, 5, 17619.
- 78J. Wang, S. Wang, C. Duan, F. J. M. Colberts, J. Mai, X. Liu, X. e. Jia, X. Lu, R. A. J. Janssen, F. Huang, Y. Cao, Adv. Energy Mater. 2017, 7, 1702033.
- 79J. Zhao, Y. Li, A. Hunt, J. Zhang, H. Yao, Z. Li, J. Zhang, F. Huang, H. Ade, H. Yan, Adv. Mater. 2016, 28, 1868.
- 80Y. Wang, Q. Liao, G. Wang, H. Guo, X. Zhang, M. A. Uddin, S. Shi, H. Su, J. Dai, X. Cheng, A. Facchetti, T. J. Marks, X. Guo, Chem. Mater. 2017, 29, 4109.
- 81L. Dou, C.-C. Chen, K. Yoshimura, K. Ohya, W.-H. Chang, J. Gao, Y. Liu, E. Richard, Y. Yang, Macromolecules 2013, 46, 3384.
- 82Y. Cui, C. Yang, H. Yao, J. Zhu, Y. Wang, G. Jia, F. Gao, J. Hou, Adv. Mater. 2017, 29, 1703080.
- 83S. Feng, M. Li, N. Tang, X. Wang, H. Huang, G. Ran, Y. Liu, Z. Xie, W. Zhang, Z. Bo, ACS Appl. Mater. Interfaces 2020, 12, 4638.
- 84A. Bondi, J. Phys. Chem. 1964, 68, 441.
- 85H. Yao, L. Ye, J. Hou, B. Jang, G. Han, Y. Cui, G. M. Su, C. Wang, B. Gao, R. Yu, H. Zhang, Y. Yi, H. Y. Woo, H. Ade, J. Hou, Adv. Mater. 2017, 29, 1700254.
- 86Y. Zou, Y. Dong, C. Sun, Y. Wu, H. Yang, C. Cui, Y. Li, Chem. Mater. 2019, 31, 4222.
- 87X. Song, N. Gasparini, M. M. Nahid, S. H. K. Paleti, C. Li, W. Li, H. Ade, D. Baran, Adv. Funct. Mater. 2019, 29, 1902441.