Active Particle Based Selective Transport and Release of Cell Organelles and Mechanical Probing of a Single Nucleus
Yue Wu
Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion–Israel Institute of Technology, Haifa, 32000 Israel
Search for more papers by this authorAfu Fu
Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, 3525433 Israel
Search for more papers by this authorCorresponding Author
Gilad Yossifon
Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion–Israel Institute of Technology, Haifa, 32000 Israel
E-mail: [email protected]
Search for more papers by this authorYue Wu
Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion–Israel Institute of Technology, Haifa, 32000 Israel
Search for more papers by this authorAfu Fu
Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, 3525433 Israel
Search for more papers by this authorCorresponding Author
Gilad Yossifon
Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion–Israel Institute of Technology, Haifa, 32000 Israel
E-mail: [email protected]
Search for more papers by this authorAbstract
Self-propelling micromotors are emerging as a promising microscale tool for single-cell analysis. The authors have recently shown that the field gradients necessary to manipulate matter via dielectrophoresis can be induced at the surface of a polarizable active (“self-propelling”) metallo-dielectric Janus particle (JP) under an externally applied electric field, acting essentially as a mobile floating microelectrode. Here, the application of the mobile floating microelectrode to trap and transport cell organelles in a selective and releasable manner is successfully extended. This selectivity is driven by the different dielectrophoretic (DEP) potential wells on the JP surface that is controlled by the frequency of the electric field, along with the hydrodynamic shearing and size of the trapped organelles. Such selective and directed loading enables purification of targeted organelles of interest from a mixed biological sample while their dynamic release enables their harvesting for further analysis such as gene/RNA sequencing or proteomics. Moreover, the electro-deformation of the trapped nucleus is shown to be in correlation with the DEP force and hence, can act as a promising label-free biomechanical marker. Hence, the active carrier constitutes an important and novel ex vivo platform for manipulation and mechanical probing of subcellular components of potential for single cell analysis.
Conflict of Interest
The authors submitted a patent describing the method.
Supporting Information
Filename | Description |
---|---|
smll201906682-sup-0001-SuppMat.pdf567.4 KB | Supporting Information |
smll201906682-sup-0002-MovieS1.mp41.6 MB | Supplementry Movie 1 |
smll201906682-sup-0003-MovieS2.mp42.7 MB | Supplementry Movie 2 |
smll201906682-sup-0004-MovieS3.mp43.1 MB | Supplementry Movie 3 |
smll201906682-sup-0005-MovieS4.mp41.3 MB | Supplementry Movie 4 |
smll201906682-sup-0006-MovieS5.mp42 MB | Supplementry Movie 5 |
smll201906682-sup-0007-MovieS6.mp42.3 MB | Supplementry Movie 6 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C.-C. Chang, K. Wang, Y. Zhang, D. Chen, B. Fan, C.-H. Hsieh, J. Wang, M.-H. Wu, J. Chen, Cytometry, Part A 2018, 93, 822.
- 2K. S. Dimmer, L. Scorrano, Physiology 2006, 21, 233.
- 3C. Tesauro, B. Ferrando, X. Ma, M. L. Jepsen, A. K. R. Ivarsen, R. Frøhlich, T. Stevnsner, B. R. Knudsen, Y. P. Ho, RSC Adv. 2017, 7, 23735.
- 4C. Aguado, E. Pérez-Jiménez, M. Lahuerta, E. Knecht, Methods Mol. Biol. 2016, 1449, 299.
- 5C. Frezza, S. Cipolat, L. Scorrano, Nat. Protoc. 2007, 2, 287.
- 6R. Flükiger-Gagescu, J. Gruenberg, Cell Biol. 2006, 2, 27.
10.1016/B978-012164730-8/50075-7 Google Scholar
- 7C. Pasquali, I. Fialka, L. A. Huber, J. Chromatogr. B: Biomed. Sci. Appl. 1999, 722, 89.
- 8Z. Li, B. Yang, S. Sekine, S. Zhuang, D. Zhang, Y. Yamaguchi, Sens. Actuators, B. 2018, 265, 110.
- 9M. Moschallski, M. Hausmann, A. Posch, A. Paulus, N. Kunz, T. T. Duong, B. Angres, K. Fuchsberger, H. Steuer, D. Stoll, S. Werner, B. Hagmeyer, M. Stelzle, Electrophoresis 2010, 31, 2655.
- 10J. Luo, B. G. Abdallah, G. G. Wolken, E. A. Arriaga, A. Ros, Biomicrofluidics 2014, 8, 021801.
- 11C.-H. Tai, S.-K. Hsiung, C.-Y. Chen, M.-L. Tsai, G.-B. Lee, Biomed. Microdevices 2007, 9, 533.
- 12K. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, L. B. Oddershede, Chem. Rev. 2017, 117, 4342.
- 13S. Kumar, G. G. Wolken, N. J. Wittenberg, E. A. Arriaga, S.-H. Oh, Anal. Chem. 2015, 87, 11973.
- 14K. Zand, T. Pham, A. Davila, D. C. Wallace, P. J. Burke, Anal. Chem. 2013, 85, 6018.
- 15S. Ghosh, A. Ghosh, Sci. Rob. 2018, 3, eaaq0076.
- 16F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, B. J. Nelson, Adv. Funct. Mater. 2015, 25, 1666.
- 17D. M. Graham, M. A. Messerli, R. Pethig, BioTechniques 2012, 52, 39.
- 18S.-H. Huang, L.-Y. Hung, G.-B. Lee, Lab Chip 2016, 16, 1447.
- 19B. P. Nadappuram, P. Cadinu, A. Barik, A. J. Ainscough, M. J. Devine, M. Kang, J. Gonzalez-Garcia, J. T. Kittler, K. R. Willison, R. Vilar, P. Actis, B. Wojciak-Stothard, S.-H. Oh, A. P. Ivanov, J. B. Edel, Nat. Nanotechnol. 2019, 14, 80.
- 20A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature 1990, 348, 346.
- 21V. S. Vajrala, E. Suraniti, P. Garrigue, B. Goudeau, M. Rigoulet, A. Devin, N. Sojic, S. Arbault, Anal. Bioanal. Chem. 2014, 406, 931.
- 22H. R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 2010, 105, 268302.
- 23Y. Wu, T. Si, J. Shao, Z. Wu, Q. He, Nano Res. 2016, 9, 3747.
- 24F. Zhang, R. Mundaca-Uribe, H. Gong, B. Esteban-Fernández de Ávila, M. Beltrán-Gastélum, E. Karshalev, A. Nourhani, Y. Tong, B. Nguyen, M. Gallot, Y. Zhang, L. Zhang, J. Wang, Adv. Mater. 2019, 31, 1901828.
- 25T. Mirkovic, N. S. Zacharia, G. D. Scholes, G. A. Ozin, Small 2010, 6, 159.
- 26A. Boymelgreen, G. Yossifon, Langmuir 2015, 31, 8243.
- 27A. Boymelgreen, G. Yossifon, T. Miloh, Langmuir 2016, 32, 9540.
- 28A. M. Boymelgreen, T. Balli, T. Miloh, G. Yossifon, Nat. Commun. 2018, 9, 760.
- 29R. Pethig, J. Electrochem. Soc. 2017, 164, B3049.
- 30S. Sundararajan, P. E. Lammert, A. W. Zudans, V. H. Crespi, A. Sen, Nano Lett. 2008, 8, 1271.
- 31J. Orozco, S. Campuzano, D. Kagan, M. Zhou, W. Gao, J. Wang, Anal. Chem. 2011, 83, 7962.
- 32G. Bai, Y. Li, H. K. Chu, K. Wang, Q. Tan, J. Xiong, D. Sun, Biomed. Eng. Online 2017, 16, 41.
- 33I. Guido, M. S. Jaeger, C. Duschl, Eur. Biophys. J. 2011, 40, 281.
- 34V. C. Shukla, T. R. Kuang, A. Senthilvelan, N. Higuita-Castro, S. Duarte-Sanmiguel, S. N. Ghadiali, D. Gallego-Perez, Trends Biotechnol. 2018, 36, 549.
- 35J. Zemła, J. Danilkiewicz, B. Orzechowska, J. Pabijan, S. Seweryn, M. Lekka, Semin. Cell Dev. Biol. 2018, 73, 115.
- 36S. L. Leung, Y. Lu, D. Bluestein, M. J. Slepian, Ann. Biomed. Eng. 2016, 44, 903.
- 37S. Gangwal, O. J. Cayre, M. Z. Bazant, O. D. Velev, Phys. Rev. Lett. 2008, 100, 058302.
- 38T. M. Squires, M. Z. Bazant, J. Fluid Mech. 2006, 560, 65.
- 39M. Zehavi, A. Boymelgreen, G. Yossifon, Phys. Rev. Appl. 2016, 5, 044013.
- 40A. Fu, S. Ma, N. Wei, B. X. X. Tan, E. Y. Tan, K. Q. Luo, Oncotarget 2016, 7, 50239.
- 41M. Medina-Sánchez, H. Xu, O. G. Schmidt, Ther. Delivery 2018, 9, 303.
- 42S. V. Puttaswamy, S. Sivashankar, R.-J. Chen, C.-K. Chin, H.-Y. Chang, C. H. Liu, Biotechnol. J. 2010, 5, 1005.
- 43I. Samudio, M. Konopleva, N. Hail, Y. X. Shi, T. McQueen, T. Hsu, R. Evans, T. Honda, G. W. Gribble, M. Sporn, H. F. Gilbert, S. Safe, M. Andreeff, J. Biol. Chem. 2005, 280, 36273.
- 44A. Pol, R. Luetterforst, M. Lindsay, S. Heino, E. Ikonen, R. G. Parton, J. Cell Biol. 2001, 152, 1057.
- 45B. S. Cummings, R. G. Schnellmann, Curr. Protoc. Pharmacol. 2004, 25, 12.8.1.
10.1002/0471141755.ph1208s25 Google Scholar
- 46K. N. Dahl, A. J. Engler, J. D. Pajerowski, D. E. Discher, Biophys. J. 2005, 89, 2855.
- 47J. D. Pajerowski, K. N. Dahl, F. L. Zhong, P. J. Sammak, D. E. Discher, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15619.
- 48S. R. Krishnaswami, R. V. Grindberg, M. Novotny, P. Venepally, B. Lacar, K. Bhutani, S. B. Linker, S. Pham, J. A. Erwin, J. A. Miller, R. Hodge, J. K. McCarthy, M. Kelder, J. McCorrison, B. D. Aevermann, F. D. Fuertes, R. H. Scheuermann, J. Lee, E. S. Lein, N. Schork, M. J. McConnell, F. H. Gage, R. S. Lasken, Nat. Protoc. 2016, 11, 499.
- 49L. Aring, S. Steinbach, K. Marcus, C. May, Methods Mol. Biol. 2018, 1723, 247.
- 50R. V. Grindberg, J. L. Yee-Greenbaum, M. J. McConnell, M. Novotny, A. L. O'Shaughnessy, G. M. Lambert, M. J. Araúzo-Bravo, J. Lee, M. Fishman, G. E. Robbins, X. Lin, P. Venepally, J. H. Badger, D. W. Galbraith, F. H. Gage, R. S. Lasken, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 19802.
- 51M. Gómez-Serrano, E. Camafeita, M. Loureiro, B. Peral, Oxid. Med. Cell. Longevity 2018, 2018, 1435934.
- 52A. Jourdain, J. C. Martinou, BMC Biol. 2010, 8, 99.
- 53S. B. Moparthi, T. Wollert, J. Cell Sci. 2019, 132, jcs223792.
- 54C.-Y. Wu, K. T. Roybal, E. M. Puchner, J. Onuffer, W. A. Lim, Science 2015, 350, aab4077.
- 55C. H. Lin, Y. L. Chen, H. R. Jiang, RSC Adv. 2017, 7, 46118.
- 56S. Ma, A. Fu, S. Lim, G. G. Y. Chiew, K. Q. Luo, Free Radicals Biol. Med. 2018, 129, 46.