Smart Microcapsules with Molecular Polarity- and Temperature-Dependent Permeability
Ji-Won Kim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorSang Seok Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324 Republic of Korea
Search for more papers by this authorJinho Park
Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorMinhee Ku
Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorJaemoon Yang
Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorCorresponding Author
Shin-Hyun Kim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
E-mail: [email protected]Search for more papers by this authorJi-Won Kim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorSang Seok Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324 Republic of Korea
Search for more papers by this authorJinho Park
Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorMinhee Ku
Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorJaemoon Yang
Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorCorresponding Author
Shin-Hyun Kim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
E-mail: [email protected]Search for more papers by this authorAbstract
Microcapsules with molecule-selective permeation are appealing as microreactors, capsule-type sensors, drug and cell carriers, and artificial cells. To accomplish molecular size- and charge-selective permeation, regular size of pores and surface charges have been formed in the membranes. However, it remains an important challenge to provide advanced regulation of transmembrane transport. Here, smart microcapsules are designed that provide molecular polarity- and temperature-dependent permeability. With capillary microfluidic devices, water-in-oil-in-water (W/O/W) double-emulsion drops are prepared, which serve as templates to produce microcapsules. The oil shell is composed of two monomers and dodecanol, which turns to a polymeric framework whose continuous voids are filled with dodecanol upon photopolymerization. One of the monomers provides mechanical stability of the framework, whereas the other serves as a compatibilizer between growing polymer and dodecanol, preventing macrophase separation. Above melting point of dodecanol, molecules that are soluble in the molten dodecanol are selectively allowed to diffuse across the shell, where the rate of transmembrane transport is strongly influenced by partition coefficient. The rate is drastically lowered for temperatures below the melting point. This molecular polarity- and temperature-dependent permeability renders the microcapsules potentially useful as drug carriers for triggered release and contamination-free microreactors and microsensors.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201900434-sup-0001-S1.pdf2 MB | Supplementary |
smll201900434-sup-0001-S1.mp46.9 MB | Supplementary |
smll201900434-sup-0002-S2.mp41.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. A. Bradbury, R. J. Bridges, Am. J. Physiol. 1994, 267, C1.
- 2K. Simons, E. Ikonen, Nature 1997, 387, 569.
- 3G. van Meer, D. R. Voelker, G. W. Feigenson, Nat. Rev. Mol. Cell Biol. 2008, 9, 112.
- 4M. Garni, S. Thamboo, C.-A. Schoenenberger, C. G. Palivan, Biochim. Biophys. Acta, Biomembr. 2017, 1859, 619.
- 5N. Ben-Haim, P. Broz, S. Marsch, W. Meier, P. Hunziker, Nano Lett. 2008, 8, 1368.
- 6T. M. S. Chang, Science 1964, 146, 524.
- 7T. M. S. Chang, Nature 1971, 229, 117.
- 8F. Lim, A. M. Sun, Science 1980, 210, 908.
- 9A. C. Powers, M. Brissová, I. Lacík, A. V. Anilkumar, K. Shahrokhi, T. G. Wang, Ann. N. Y. Acad. Sci. 2006, 831, 208.
10.1111/j.1749-6632.1997.tb52195.x Google Scholar
- 10B. P. Barnett, A. Arepally, M. Stuber, D. R. Arifin, D. L. Kraitchman, J. W. M. Bulte, Nat. Protoc. 2011, 6, 1142.
- 11S. Chinnayelka, M. J. McShane, Anal. Chem. 2005, 77, 5501.
- 12O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, J. Mater. Chem. 2007, 17, 4471.
- 13X. Xie, W. Zhang, A. Abbaspourrad, J. Ahn, A. Bader, S. Bose, A. Vegas, J. Lin, J. Tao, T. Hang, H. Lee, N. Iverson, G. Bisker, L. Li, M. S. Strano, D. A. Weitz, D. G. Anderson, Nano Lett. 2017, 17, 2015.
- 14C. H. Park, S. Lee, G. Pornnoppadol, Y. S. Nam, S.-H. Kim, B. J. Kim, ACS Appl. Mater. Interfaces 2018, 10, 9023.
- 15S. Lee, T. Y. Lee, D. J. Kim, B. Kim, S.-H. Kim, Chem. Mater. 2018, 30, 7211.
- 16J. Huo, J. Aguilera-Sigalat, S. El-Hankari, D. Bradshaw, Chem. Sci. 2015, 6, 1938.
- 17L. Lin, T. Zhang, H. Liu, J. Qiu, X. Zhang, Nanoscale 2015, 7, 7615.
- 18L. D. Blackman, S. Varlas, M. C. Arno, Z. H. Houston, N. L. Fletcher, K. J. Thurecht, M. Hasan, M. I. Gibson, R. K. O'Reilly, ACS Cent. Sci. 2018, 4, 718.
- 19M. Ali, S. Bora, S. K. Ghosh, Langmuir 2014, 30, 10449.
- 20B. Kim, T. Y. Lee, A. Abbaspourrad, S.-H. Kim, Chem. Mater. 2014, 26, 7166.
- 21B. Kim, T. Y. Jeon, Y.-K. Oh, S.-H. Kim, Langmuir 2015, 31, 6027.
- 22W. Li, Y. Zhang, Z. Xu, Q. Meng, Z. Fan, S. Ye, G. Zhang, Angew. Chem., Int. Ed. 2016, 55, 955.
- 23J. Oh, B. Kim, S. Lee, S.-H. Kim, M. Seo, Chem. Mater. 2018, 30, 273.
- 24X. Hao, L. Chen, W. Sang, Q. Yan, Adv. Sci. 2018, 5, 1700591.
- 25C. Doonan, R. Riccò, K. Liang, D. Bradshaw, P. Falcaro, Acc. Chem. Res. 2017, 50, 1423.
- 26D. Patra, A. Sanyal, V. M. Rotello, Chem.- Asian J. 2010, 5, 2442.
- 27D. Patra, F. Sleem, Colloids Surf., A 2014, 443, 320.
- 28W.-F. Dong, J. K. Ferri, T. Adalsteinsson, M. Schönhoff, G. B. Sukhorukov, H. Möhwald, Chem. Mater. 2005, 17, 2603.
- 29E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, Biomacromolecules 2006, 7, 710.
- 30P. K. Mandapalli, S. Labala, D. Vanamala, M. P. Koranglekar, L. A. Sakimalla, V. V. K. Venuganti, Drug Delivery 2014, 21, 605.
- 31A. Biswas, A. T. Nagaraja, Y.-H. You, J. R. Roberts, M. J. McShane, RSC Adv. 2016, 6, 71781.
- 32M. Prevot, C. Déjugnat, H. Möhwald, G. B. Sukhorukov, Chem. Phys. Chem. 2006, 7, 2497.
- 33V. Kozlovskaya, E. Kharlampieva, I. Drachuk, D. Cheng, V. V. Tsukruk, Soft Matter 2010, 6, 3596.
- 34Q. Yi, G. B. Sukhorukov, ACS Nano 2013, 7, 8693.
- 35W. Xu, A. A. Steinschulte, F. A. Plamper, V. F. Korolovych, V. V. Tsukruk, Chem. Mater. 2016, 28, 975.
- 36W. Xu, P. A. Ledin, Z. Iatridi, C. Tsitsilianis, V. V. Tsukruk, Angew. Chem., Int. Ed. 2016, 55, 4908.
- 37S. S. Lee, A. Abbaspourrad, S.-H. Kim, ACS Appl. Mater. Interfaces 2014, 6, 1294.
- 38T. Y. Lee, T. M. Choi, T. S. Shim, R. A. M. Frijns, S.-H. Kim, Lab Chip 2016, 16, 3415.
- 39C.-X. Zhao, D. Chen, Y. Hui, D. A. Weitz, A. P. J. Middelberg, Chem. Phys. Chem. 2016, 17, 1553.
- 40C.-X. Zhao, D. Chen, Y. Hui, D. A. Weitz, A. P. J. Middelberg, Chem. Phys. Chem. 2017, 18, 1393.
- 41D. Lee, D. A. Weitz, Adv. Mater. 2008, 20, 3498.
- 42R. K. Shah, J.-W. Kim, D. A. Weitz, Crit. Rev. Ther. Drug Carrier Syst. 2010, 26, 1561.
- 43J. S. Sander, A. R. Studart, Langmuir 2011, 27, 3301.
- 44T. Brugarolas, F. Tu, D. Lee, Soft Matter 2013, 9, 9046.
- 45R. A. Prasath, M. T. Gokmen, P. Espeel, F. E. Du Prez, Polym. Chem. 2010, 1, 685.
- 46G. Kaufman, R. Boltyanskiy, S. Nejati, A. R. Thiam, M. Loewenberg, E. R. Dufresne, C. O. Osuji, Lab Chip 2014, 14, 3494.
- 47L. Zhang, L.-H. Cai, P. S. Lienemann, T. Rossow, I. Polenz, Q. Vallmajo-Martin, M. Ehrbar, H. Na, D. J. Mooney, D. A. Weitz, Angew. Chem. 2016, 128, 13668.
10.1002/ange.201606960 Google Scholar
- 48A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. A. Weitz, Science 2005, 308, 537.
- 49S.-H. Kim, J. W. Kim, J.-C. Cho, D. A. Weitz, Lab Chip 2011, 11, 3162.
- 50S. S. Datta, S.-H. Kim, J. Paulose, A. Abbaspourrad, D. R. Nelson, D. A. Weitz, Phys. Rev. Lett. 2012, 109, 134302.
- 51H. M. J. Boots, J. G. Kloosterboer, C. Serbutoviez, F. J. Touwslager, Macromolecules 1996, 29, 7683.
- 52C. Serbutoviez, J. G. Kloosterboer, H. M. J. Boots, F. J. Touwslager, Macromolecules 1996, 29, 7690.
- 53J.-W. Kim, K.-S. Lee, H.-K. Ju, J.-H. Ryu, S.-H. Han, I.-S. Chang, H.-H. Kang, S.-G. Oh, K.-D. Suh, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2202.
- 54W. Liu, Y. Zhao, C. Zeng, C. Wang, C. A. Serra, L. Zhang, Chem. Eng. J. 2017, 307, 408.
- 55B. J. Sun, H. C. Shum, C. Holtze, D. A. Weitz, ACS Appl. Mater. Interfaces 2010, 2, 3411.
- 56M. Windbergs, Y. Zhao, J. Heyman, D. A. Weitz, J. Am. Chem. Soc. 2013, 135, 7933.
- 57Y. Zhao, H. C. Shum, L. L. A. Adams, B. Sun, C. Holtze, Z. Gu, D. A. Weitz, Langmuir 2011, 27, 13988.
- 58T. A. Comunian, A. Abbaspourrad, C. S. Favaro-Trindade, D. A. Weitz, Food Chem. 2014, 152, 271.
- 59S. S. Lee, J. Park, Y. Seo, S.-H. Kim, ACS Appl. Mater. Interfaces 2017, 9, 17178.
- 60M. A. Suckow, P. Danneman, C. Brayton, The Laboratory Mouse, CRC Press, Boca Raton 2001.