Room-Temperature Phototransistor with Negative Photoresponsivity of 108 A W−1 Using Fullerene-Sensitized Aligned Carbon Nanotubes
Kevin Bergemann
Sandia National Laboratories, Livermore, CA, 94551 USA
Search for more papers by this authorCorresponding Author
François Léonard
Sandia National Laboratories, Livermore, CA, 94551 USA
E-mail: [email protected]Search for more papers by this authorKevin Bergemann
Sandia National Laboratories, Livermore, CA, 94551 USA
Search for more papers by this authorCorresponding Author
François Léonard
Sandia National Laboratories, Livermore, CA, 94551 USA
E-mail: [email protected]Search for more papers by this authorAbstract
Detection of low intensity light down to a few photons requires photodetectors with high gain. A new photodetector is reported based on C60-sensitized aligned carbon nanotube (CNT) transistors with an extremely high responsivity of 108 A W−1 (gain > 108) in the ultraviolet and visible range, and 720 A W−1 (gain = 940) in the infrared range. In contrast to most sensitized phototransistors that operate on the photogating effect, the new photodetector operates on the modulation of the electrons scattering in the CNTs, leading to negative photoconductivity. Comparison with similar photodetectors using random CNT networks shows the benefit of using aligned CNTs. At room temperature, the aligned CNT photodetectors are demonstrated to detect a few tens of photons per CNT.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201802806-sup-0001-S1.pdf756.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K. J. Cho, Nano Lett. 2003, 3, 347.
- 2S. Sorgenfrei, C. Chiu, R. L. Gonzalez Jr., Y.-J. Yu, P. Kim, C. Nuckolls, K. L. Shepard, Nat. Nanotechnol. 2011, 6, 126.
- 3X. He, F. Léonard, J. Kono, Adv. Opt. Mater. 2015, 3, 989.
- 4I. Hwang, J. Kim, M. Lee, M.-W. Lee, H.-J. Kim, H.-I. Kwon, D. K. Hwang, M. Kim, H. Yoon, Y.-H. Kim, S. K. Park, Nanoscale 2017, 9, 16711.
- 5M. S. Arnold, J. D. Zimmerman, C. K. Renshaw, X. Xu, R. R. Lunt, C. M. Austin, S. R. Forrest, Nano Lett. 2009, 9, 3354.
- 6M. Salvato, M. Scagliotti, M. D. Crescenzi, M. Crivellari, P. Prosposito, I. Cacciotti, P. Castrucci, Nanotechnology 2017, 28, 435201.
- 7A. Y. Glamazda, V. A. Karachevtsev, W. B. Euler, I. A. Levitsky, Adv. Funct. Mater. 2012, 22, 2177.
- 8G. Vera-Reveles, T. J. Simmons, M. Bravo-Sanchez, M. A. Vidal, H. Navarro-Contreras, F. J. Gonzalez, ACS Appl. Mater. Interfaces 2011, 3, 3200.
- 9X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, J. Kono, Nano Lett. 2014, 14, 3953.
- 10M. Omari, N. A. Kouklin, Appl. Phys. Lett. 2011, 98, 243113.
- 11G. J. Brady, A. J. Way, N. S. Safron, H. T. Evensen, P. Gopalan, M. S. Arnold, Sci. Adv. 2016, 2, e1601240.
- 12A. W. Bushmaker, V. Oklejas, D. Walker, A. R. Hopkins, J. Chen, S. B. Cronin, Nat. Commun. 2016, 7, 10475.
- 13N.-P. Wang, S. Heinze, J. Tersoff, Nano Lett. 2007, 7, 910.
- 14N. Neophytou, D. Kienle, E. Polizzi, M. P. Anantram, Appl. Phys. Lett. 2006, 88, 242106.
- 15X. Zhou, T. Zifer, B. M. Wong, K. L. Krafcik, F. Léonard, A. L. Vance, Nano Lett. 2009, 9, 1028.
- 16J. M. Simmons, I. In, V. E. Campbell, T. J. Mark, F. Léonard, P. Gopalan, M. A. Eriksson, Phys. Rev. Lett. 2007, 98, 086802.
- 17Y. Zhao, C. Huang, M. Kim, B. M. Wong, F. Léonard, P. Gopalan, M. A. Eriksson, ACS Appl. Mater. Interfaces 2013, 5, 9355.
- 18X. Guo, L. Huang, S. O'Brien, P. Kim, C. Nuckolls, J. Am. Chem. Soc. 2005, 127, 15045.
- 19D. S. Hecht, R. J. A. Ramirez, M. Briman, E. Artukovic, K. S. Chichak, J. F. Stoddart, G. Grüner, Nano Lett. 2006, 6, 2031.
- 20G. M. Aminur Rahman, D. M. Guldi, S. Campidelli, M. Prato, J. Mater. Chem. 2006, 16, 62.
- 21M. Pfohl, K. Glaser, A. Graf, A. Mertens, D. D. Tune, T. Puerckhauer, A. Alam, L. Wei, Y. Chen, J. Zaumseil, A. Colsmann, R. Krupke, B. S. Flavel, Adv. Energy Mater. 2016, 6, 1600890.
- 22D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, G. Konstantatos, Adv. Mater. 2015, 27, 176.
- 23K. J. Bergemann, X. Liu, A. Panda, S. R. Forrest, Phys. Rev. B 2015, 92, 035408.
- 24D. J. Bindl, M.-Y. Wu, F. C. Prehn, M. S. Arnold, Nano Lett. 2011, 11, 455.
- 25D. J. Bindl, N. S. Safron, M. S. Arnold, ACS Nano 2010, 4, 5657.
- 26D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. V. Voorhis, M. A. Baldo, Science 2013, 340, 334.
- 27S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, Z. Bao, Adv. Mater. 2015, 27, 759.
- 28Y. Joo, G. J. Brady, M. S. Arnold, P. Gopalan, Langmuir 2014, 30, 3460.
- 29G. J. Brady, Y. Joo, M.-Y. Wu, M. J. Shea, P. Gopalan, M. S. Arnold, ACS Nano 2014, 8, 11614.
- 30G. J. Brady, Y. Joo, S. Singha Roy, P. Gopalan, M. S. Arnold, Appl. Phys. Lett. 2014, 104, 083107.
- 31M. Shim, J. H. Back, T. Ozel, K.-W. Kwon, Phys. Rev. B 2005, 71, 205411.
- 32M. Shim, G. P. Siddons, Appl. Phys. Lett. 2003, 83, 3564.
- 33J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Nanoscale Res. Lett. 2011, 6, 404.
- 34Q. H. Li, T. Gao, Y. G. Wang, T. H. Wang, Appl. Phys. Lett. 2005, 86, 123117.
- 35F. Léonard, Nanotechnology 2006, 17, 2381.
- 36F. Léonard, D. A. Stewart, Nanotechnology 2006, 17, 4699.
- 37S. M. Young, M. Sarovar, F. Léonard, Phys. Rev. A 2018, 97, 033836.
- 38A. Vijayaraghavan, S. Kar, C. Soldano, S. Talapatra, O. Nalamasu, P. M. Ajayan, Appl. Phys. Lett. 2006, 89, 162108.
- 39W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai, Nano Lett. 2003, 3, 193.
- 40C. M. Aguirre, P. L. Lévesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, R. Martel, Adv. Mater. 2009, 21, 3087.
- 41A. Buldum, J. P. Lu, Phys. Rev. B 2001, 63, 161403.
- 42P. G. Collins, M. S. Fuhrer, A. Zettl, Appl. Phys. Lett. 2000, 76, 894.
- 43E. S. Snow, J. P. Novak, M. D. Lay, F. K. Perkins, Appl. Phys. Lett. 2004, 85, 4172.
- 44F. Liu, K. L. Wang, D. Zhang, C. Zhou, Appl. Phys. Lett. 2006, 89, 063116.