Boosting the Electrochemical Performance of Li–S Batteries with a Dual Polysulfides Confinement Strategy
Yu Yao
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
Search for more papers by this authorWanlin Feng
Innovation Research Team for Advanced Ceramics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900 China
Search for more papers by this authorMinglong Chen
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
Search for more papers by this authorXiongwu Zhong
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
Search for more papers by this authorCorresponding Author
Xiaojun Wu
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Haibin Zhang
Innovation Research Team for Advanced Ceramics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Yan Yu
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorYu Yao
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
Search for more papers by this authorWanlin Feng
Innovation Research Team for Advanced Ceramics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900 China
Search for more papers by this authorMinglong Chen
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
Search for more papers by this authorXiongwu Zhong
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
Search for more papers by this authorCorresponding Author
Xiaojun Wu
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Haibin Zhang
Innovation Research Team for Advanced Ceramics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Yan Yu
Department of Materials Science and Engineering, University of Science and Technology of China, CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026 Anhui, China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorAbstract
Lithium–sulfur (Li–S) batteries have attracted more and more attention because they represent one of the most promising candidates to satisfy emerging energy storage demands. The biggest challenge regarding the application of the Li–S battery is to suppress the polysulfide shuttle while maintaining a high sulfur loading mass. Here, a dual polysulfide confinement strategy is designed by confinement of sulfur in polydopamine-coated MXene nanosheets (denoted as S@Mxe@PDA) that performs as a high-performance cathode for Li–S cells owing to their inherently high underlying metallic conductivity and chemical bonding and strong chemical adsorption to lithium polysulfides (LPs). This dual LPs confinement strategy is supported by the results of density functional theory calculations. It is demonstrated that the S@Mxe@PDA cathode exhibits outstanding electrochemical properties, including high reversible capacity (1044 mAh g−1 after 150 cycles at 0.2 C), superior rate capability (624 mAh g−1 at 6 C) and excellent cycling stability (556 mAh g−1 after 330 cycles at 0.5 C with 4.4 mg cm−2 sulfur loading). This work offers a facile and effective method for boosting Li–S batteries into practical applications.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201802516-sup-0001-S1.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098.
- 2B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.
- 3P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19.
- 4S. Wei, L. Ma, K. E. Hendrickson, Z. Tu, L. A. Archer, J. Am. Chem. Soc. 2015, 137, 12143.
- 5P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210.
- 6G. Zhou, F. Li, H. M. Cheng, Energy Environ. Sci. 2014, 7, 1307.
- 7Z. Wang, Y. Dong, H. Li, Z. Zhao, H. B. Wu, C. Hao, S. Liu, J. Qiu, X. W. D. Lou, Nat. Commun. 2014, 5, 5002.
- 8R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, F. Li, Adv. Mater. 2017, 29, 1606823.
- 9Y. Xie, Y. Dall'Agnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. Zhuang, P. R. C. Kent, ACS Nano 2014, 8, 9606.
- 10C. Qu, Y. Chen, X. Yang, H. Zhang, X. Li, H. Zhang, Nano Energy 2017, 39, 262.
- 11Z. W. Zhang, H. J. Peng, M. Zhao, J. Q. Huang, Adv. Funct. Mater. 2018, 1707536.
- 12T. H. Hwang, D. S. Jung, J. S. Kim, B. G. Kim, J. W. Choi, Nano Lett. 2013, 13, 4532.
- 13W. Zhou, Y. Yu, H. Chen, F. J. DiSalvo, H. c. D. Abruña, J. Am. Chem. Soc. 2013, 135, 16736.
- 14J. S. Kim, T. H. Hwang, B. G. Kim, J. Min, J. W. Choi, Adv. Funct. Mater. 2014, 24, 5359.
- 15J. Liang, Z. H. Sun, F. Li, H. M. Cheng, Energy Storage Mater. 2016, 2, 76.
- 16B. Guo, X. Wang, P. F. Fulvio, M. Chi, S. M. Mahurin, X. G. Sun, S. Dai, Adv. Mater. 2011, 23, 4661.
- 17D. Jia, X. Yu, H. Tan, X. Li, F. Han, L. Li, H. Liu, J. Mater. Chem. A 2017, 5, 1516.
- 18N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. 2011, 123, 6026.
10.1002/ange.201100637 Google Scholar
- 19G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Nat. Commun. 2016, 7, 10601.
- 20Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519.
- 21G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2011, 11, 4462.
- 22G. Zhou, Y. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402236.
- 23S. Lu, Y. Cheng, X. Wu, J. Liu, Nano Lett. 2013, 13, 2485.
- 24G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, Y. Cui, Nano Lett. 2013, 13, 1265.
- 25Z. Li, J. Zhang, X. W. D. Lou, Angew. Chem., Int. Ed. 2015, 54, 12886.
- 26H. J. Peng, Q. Zhang, Angew. Chem., Int. Ed. 2015, 54, 11018.
- 27L. Ma, H. L. Zhuang, S. Wei, K. E. Hendrickson, M. S. Kim, G. Cohn, R. G. Hennig, L. A. Archer, ACS Nano 2016, 10, 1050.
- 28W. Zhou, X. Xiao, M. Cai, L. Yang, Nano Lett. 2014, 14, 5250.
- 29S. Rehman, S. Guo, Y. Hou, Adv. Mater. 2016, 28, 3167.
- 30T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q.-H. Yang, Energy Environ. Sci. 2017, 10, 1694.
- 31K. S. Park, J. G. Kang, Y. J. Choi, S. Lee, D. W. Kim, J. G. Park, Energy Environ. Sci. 2011, 4, 1796.
- 32X. Liang, A. Garsuch, L. F. Nazar, Angew. Chem., Int. Ed. 2015, 54, 3907.
- 33M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.
- 34M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. C. Zhu, F. Wei, ACS Nano 2012, 6, 10759.
- 35G. C. Li, G. R. Li, S. H. Ye, X. P. Gao, Adv. Energy Mater. 2012, 2, 1238.
- 36G. Ma, Z. Wen, J. Jin, M. Wu, X. Wu, J. Zhang, J. Power Sources 2014, 267, 542.
- 37L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176.
- 38X. Liang, Y. Rangom, C. Y. Kwok, Q. Pang, L. F. Nazar, Adv. Mater. 2017, 29, 1603040.
- 39W. Bao, D. Su, W. Zhang, X. Guo, G. Wang, Adv. Funct. Mater. 2016, 26, 8746.
- 40M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78.
- 41D. Er, J. Li, M. Naguib, Y. Gogotsi, V. B. Shenoy, ACS Appl. Mater. Interfaces 2014, 6, 11173.
- 42X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nat. Commun. 2015, 6, 5682.
- 43X. Liang, C. Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C. J. Hart, D. Houtarde, K. Kaup, H. Sommer, Adv. Energy Mater. 2016, 6, 1501636.
- 44F. Wu, Y. Ye, R. Chen, J. Qian, T. Zhao, L. Li, W. Li, Nano Lett. 2015, 15, 7431.
- 45L. Wang, D. Wang, F. Zhang, J. Jin, Nano Lett. 2013, 13, 4206.
- 46N. F. Della Vecchia, R. Avolio, M. Alfè, M. E. Errico, A. Napolitano, M. d'Ischia, Adv. Funct. Mater. 2013, 23, 1331.
- 47D. R. Dreyer, D. J. Miller, B. D. Freeman, D. R. Paul, C. W. Bielawski, Langmuir 2012, 28, 6428.
- 48M. d'Ischia, A. Napolitano, V. Ball, C. T. Chen, M. J. Buehler, Acc. Chem. Res. 2014, 47, 3541.
- 49Y. Dong, Z. S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, ACS Nano 2017, 11, 4792.
- 50J. Song, Z. Yu, M. L. Gordin, D. Wang, Nano Lett. 2016, 16, 864.
- 51X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z. W. Seh, Q. Cai, W. Li, G. Zhou, Nat. Commun. 2016, 7, 11203.
- 52L. Ma, H. Yuan, W. Zhang, G. Zhu, Y. Wang, Y. Hu, P. Zhao, R. Chen, T. Chen, J. Liu, Nano Lett. 2017, 17, 7839.
- 53T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, Adv. Energy Mater. 2017, 7, 1601843.
- 54T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z. Jin, J. Am. Chem. Soc. 2017, 139, 12710.
- 55M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633.