Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction
Zhengping Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXinjin Gao
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorMeiling Dou
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorJing Ji
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Feng Wang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]Search for more papers by this authorZhengping Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXinjin Gao
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorMeiling Dou
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorJing Ji
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Feng Wang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]Search for more papers by this authorAbstract
Exploring sustainable and high-performance electrocatalysts for the oxygen reduction reaction (ORR) is the crucial issue for the large-scale application of fuel cell technology. A new strategy is demonstrated to utilize the biomass resource for the synthesis of N-doped hierarchically porous carbon supported single-atomic Fe (SA-Fe/NHPC) electrocatalyst toward the ORR. Based on the confinement effect of porous carbon and high-coordination natural iron source, SA-Fe/NHPC, derived from the hemin-adsorbed bio-porphyra-carbon by rapid heat-treatment up to 800 °C, presents the atomic dispersion of Fe atoms in the N-doped porous carbon. Compared with the molecular hemin and nanoparticle Fe samples, the as-prepared SA-Fe/NHPC exhibits a superior catalytic activity (E1/2 = 0.87 V and Jk = 4.1 mA cm−2, at 0.88 V), remarkable catalytic stability (≈1 mV negative shift of E1/2, after 3000 potential cycles), and outstanding methanol-tolerance, even much better than the state-of-the-art Pt/C catalyst. The sustainable and effective strategy for utilizing biomass to achieve high-performance single-atom catalysts can also provide an opportunity for other catalytic applications in the atomic scale.
Supporting Information
Filename | Description |
---|---|
smll201604290-sup-0001-S1.pdf1.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345.
- 2J. R. Varcoe, R. C. Slade, Fuel Cells 2005, 5, 187.
- 3M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.
- 4L. Ding, X. Dai, R. Lin, H. Wang, J. Qiao, J. Electrochem. Soc. 2012, 159, F577.
- 5L. Dai, Y. Xue, L. Qu, H. J. Choi, J. B. Baek, Chem. Rev. 2015, 115, 4823.
- 6X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, Science 2015, 348, 1230.
- 7Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168.
- 8L. Gan, S. Rudi, C. Cui, M. Heggen, P. Strasser, Small 2016, 12, 3189.
- 9R. Borup, J. Meyers, B. Pivovar, Chem. Rev. 2007, 107, 3904.
- 10C. Sealy, Mater. Today 2008, 11, 65.
- 11Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2012, 134, 15849.
- 12J. M. Falkowski, N. M. Concannon, B. Yan, Y. Surendranath, J. Am. Chem. Soc. 2015, 137, 7978.
- 13Z. Y. Wu, X. X. Xu, B. C. Hu, H. W. Liang, Y. Lin, L. F. Chen, S. H. Yu, Angew. Chem. Int. Ed. 2015, 54, 1.
- 14X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
- 15A. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937.
- 16J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2015, 54, 10102.
- 17P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu, F. Kapteijn, A. Dikhtiarenko, Y. Chen, X. Gu, X. Tang, Angew. Chem. Int. Ed. 2014, 53, 3418.
- 18P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 10800.
- 19Z. Zhang, M. Dou, H. Liu, L. Dai, F. Wang, Small 2016, 12, 4193.
- 20W. Liu, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, Chem. Sci. 2016, 7, 5758.
- 21S. Yasuda, A. Furuya, Y. Uchibori, J. Kim, K. Murakoshi, Adv. Funct. Mater. 2016, 26, 738.
- 22Y. C. Wang, Y. J. Lai, L. Song, Z. Y. Zhou, J. G. Liu, Q. Wang, X. D. Yang, C. Chen, W. Shi, Y. P. Zheng, M. Rauf, S. G. Sun, Angew. Chem. Int. Ed. 2015, 54, 9907.
- 23Z. Zhang, X. Gao, M. Dou, J. Ji, F. Wang, J. Mater. Chem. A 2017, 5, 1526.
- 24R. Cao, R. Thapa, H. Kim, X. Xu, M. G. Kim, Q. Li, N. Park, M. Liu, J. Cho, Nat. Commun. 2013, 4, 2076.
- 25Z. Zhang, S. Yang, M. Dou, H. Liu, L. Gu, F. Wang, RSC Adv. 2016, 6, 67049.
- 26W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Angew. Chem. Int. Ed. 2015, 54, 2.
- 27M. Moses-DeBusk, M. Yoon, L. F. Allard, D. R. Mullins, Z. Wu, X. Yang, G. Veith, G. M. Stocks, C. K. Narula, J. Am. Chem. Soc. 2013, 135, 12634.
- 28S. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang, J. Wang, Energy Environ. Sci. 2015, 8, 221.
- 29S. Gao, X. Wei, H. Fan, L. Li, K. Geng, J. Wang, Nano Energy 2015, 13, 518.
- 30M. Dou, D. He, W. Shao, H. Liu, F. Wang, L. Dai, Chem. - Eur. J. 2016, 22, 2896.
- 31P. J. Wei, G. Q. Yu, Y. Naruta, J. G. Liu, Angew. Chem. Int. Ed. 2014, 53, 6659.
- 32Q. Wang, Z. Zhou, D. Chen, J. Lin, F. Ke, G. Xu, S. Sun, Sci. China: Chem. 2010, 53, 2057.
- 33H. W. Liang, X. Zhuang, S. Bruller, X. Feng, K. Mullen, Nat. Commun. 2014, 5, 4973.
- 34J. Pampel, T.-P. Fellinger, Adv. Energy Mater. 2016, 6, 1502389.
- 35P. Colomban, S. Cherifi, G. Despert, J. Raman Spectrosc. 2008, 39, 881.
- 36T. Li, Y. Peng, K. Li, R. Zhang, L. Zheng, D. Xia, X. Zuo, J. Power Sources 2015, 293, 511.
- 37T. Xing, Y. Zheng, L. H. Li, B. C. Cowie, D. Gunzelmann, S. Z. Qiao, S. Huang, Y. Chen, ACS Nano 2014, 8, 6856.
- 38G. P. Lopez, D. G. Castner, B. D. Ratner, Surf. Interface Anal. 1991, 17, 267.
- 39J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2000, 2, 1319.
- 40P. G. Collins, Science 2000, 287, 1801.