Photoswitching and Thermoresponsive Properties of Conjugated Multi-chromophore Nanostructured Materials
Santanu Bhattacharyya
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-32, India
Search for more papers by this authorBikash Jana
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-32, India
Search for more papers by this authorSumanta Sain
Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104 West Bengal, India
Search for more papers by this authorMonoj Kumar Barman
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-32, India
Search for more papers by this authorSwapan Kumar Pradhan
Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104 West Bengal, India
Search for more papers by this authorCorresponding Author
Amitava Patra
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-32, India
E-mail: [email protected]Search for more papers by this authorSantanu Bhattacharyya
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-32, India
Search for more papers by this authorBikash Jana
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-32, India
Search for more papers by this authorSumanta Sain
Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104 West Bengal, India
Search for more papers by this authorMonoj Kumar Barman
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-32, India
Search for more papers by this authorSwapan Kumar Pradhan
Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104 West Bengal, India
Search for more papers by this authorCorresponding Author
Amitava Patra
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-32, India
E-mail: [email protected]Search for more papers by this authorAbstract
Conjugated multi-chromophore organic nanostructured materials have recently emerged as a new class of functional materials for developing efficient light-harvesting, photosensitization, photocatalysis, and sensor devices because of their unique photophysical and photochemical properties. Here, we demonstrate the formation of various nanostructures (fibers and flakes) related to the molecular arrangement (H-aggregation) of quaterthiophene (QTH) molecules and their influence on the photophysical properties. XRD studies confirm that the fiber structure consists of >95% crystalline material, whereas the flake structure is almost completely amorphous and the microstrain in flake-shaped QTH is significantly higher than that of QTH in solution. The influence of the aggregation of the QTH molecules on their photoswitching and thermoresponsive photoluminescence properties is revealed. Time-resolved anisotropic studies further unveil the relaxation dynamics and restricted chromophore properties of the self-assembled nano/microstructured morphologies. Further investigations should pave the way for the future development of organic electronics, photovoltaics, and light-harvesting systems based on π-conjugated multi-chromophore organic nanostructured materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201501645-sup-0001-S1.pdf332.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Chaudhuri, D. Li, Y. Che, E. Shafran, J. M. Gerton, L. Zang, J. M. Lupton, Nano Lett. 2011, 11, 488.
- 2K. Becker, E. Da Como, J. Feldmann, F. Scheliga, E. Thorn Csányi, S. Tretiak, J. M. Lupton, J. Phys. Chem. B 2008, 112, 4859.
- 3S.-o. Kim, T. K. An, J. Chen, I. Kang, S. H. Kang, D. S. Chung, C. E. Park, Y.-H. Kim, S.-K. Kwon, Adv. Funct. Mater. 2011, 21, 1616.
- 4J. G. Woller, J. K. Hannestad, B. Albinsson, J. Am. Chem. Soc. 2013, 135, 2759.
- 5G. D. Scholes, G. Rumbles, Nat. Mater. 2006, 5, 683.
- 6Y. Tamai, Y. Matsuura, H. Ohkita, H. Benten, S. Ito, J. Phys. Chem. Lett. 2014, 5, 399.
- 7B. J. Schwartz, Annu. Rev. Phys. Chem. 2003, 54, 141.
- 8M. Ikeda, M. Takeuchi, S. Shinkai, Chem. Commun. 2003, 1354.
- 9L. A. Estroff, A. D. Hamilton, Chem. Rev. 2004, 104, 1201.
- 10J.-H. Ryu, M. Lee, J. Am. Chem. Soc. 2005, 127, 14170.
- 11E. Lee, J.-K. Kim, M. Lee, Angew. Chem. Int. Ed. 2008, 47, 6375.
- 12L. Chen, S. Revel, K. Morris, D. J. Adams, Chem. Commun. 2010, 46, 4267.
- 13B. Narayan, S. P. Senanayak, A. Jain, K. S. Narayan, S. J. George, Adv. Funct. Mater. 2013, 23, 3053.
- 14M. Kasha, Radiat. Res. 1963, 20, 55.
- 15H. Kano, T. Kobayashi, J. Chem. Phys. 2002, 116, 184.
- 16S. S. Zade, N. Zamoshchik, M. Bendikov, Acc. Chem. Res. 2010, 44, 14.
- 17S. Bhattacharyya, B. Paramanik, S. Kundu, A. Patra, ChemPhysChem 2012, 13, 4155.
- 18D. P. Ostrowski, L. A. Lytwak, M. L. Mejia, K. J. Stevenson, B. J. Holliday, D. A. Vanden Bout, ACS Nano 2012, 6, 5507.
- 19S. Bhattacharyya, B. Jana, A. Patra, ChemPhysChem 2015, 16, 796.
- 20X. Gong, T. Milic, C. Xu, J. D. Batteas, C. M. Drain, J. Am. Chem. Soc. 2002, 124, 14290.
- 21T. Hasobe, H. Oki, A. S. D. Sandanayaka, H. Murata, Chem. Commun. 2008, 724.
- 22T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, J. Mater. Chem. 2003, 13, 2515.
- 23S. J. Lee, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2008, 130, 9632.
- 24Y. Yan, Y. Lin, Y. Qiao, J. Huang, Soft Matter 2011, 7, 6385.
- 25G. Tu, H. Li, M. Forster, R. Heiderhoff, L. J. Balk, R. Sigel, U. Scherf, Small 2007, 3, 1001.
- 26C. M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 2009, 109, 1630.
- 27L. Jiang, Y. Fu, H. Li, W. Hu, J. Am. Chem. Soc. 2008, 130, 3937.
- 28E. Da Como, M. A. Loi, M. Murgia, R. Zamboni, M. Muccini, J. Am. Chem. Soc. 2006, 128, 4277.
- 29S. Ellinger, A. Kreyes, U. Ziener, C. Hoffmann-Richter, K. Landfester, M. Möller, Eur. J. Org. Chem. 2007, 2007, 5686.
- 30D. Fichou, J. Mater. Chem. 2000, 10, 571.
- 31G. Barbarella, M. Zambianchi, M. del Fresno, I Marimon, L. Antolini, A. Bongini, Adv. Mater. 1997, 9, 484.
- 32T. Nicolini, A. Famulari, T. Gatti, J. Martí-Rujas, F. Villafiorita-Monteleone, E. V. Canesi, F. Meinardi, C. Botta, E. Parisini, S. V. Meille, C. Bertarelli, J. Phys. Chem. Lett. 2014, 5, 2171.
- 33A. B. Nepomnyashchii, R. J. Ono, D. M. Lyons, J. L. Sessler, C. W. Bielawski, A. J. Bard, J. Phys. Chem. Lett. 2012, 3, 2035.
- 34A. Mishra, C.-Q. Ma, P. Bäuerle, Chem. Rev. 2009, 109, 1141.
- 35Y. Morisaki, J. A. Fernandes, Y. Chujo, Polym. J. 2010, 42, 928.
- 36R. Fitzner, C. Elschner, M. Weil, C. Uhrich, C. Körner, M. Riede, K. Leo, M. Pfeiffer, E. Reinold, E. Mena-Osteritz, P. Bäuerle, Adv. Mater. 2012, 24, 675.
- 37S. R. Diegelmann, J. M. Gorham, J. D. Tovar, J. Am. Chem. Soc. 2008, 130, 13840.
- 38Y. Chen, X. Wan, G. Long, Acc. Chem. Res. 2013, 46, 2645.
- 39H. Rietveld, Acta Crystallogr. 1967, 22, 151.
- 40H. Rietveld, J. Appl. Crystallogr. 1969, 2, 65.
- 41H. Dutta, S. K. Manik, S. K. Pradhan, J. Appl. Crystallogr. 2003, 36, 260.
- 42S. K. Pradhan, M. Sinha, J. Appl. Crystallogr. 2005, 38, 951.
- 43S. Sain, A. Kar, A. Patra, S. K. Pradhan, CrystEngComm 2014, 16, 1079.
- 44J. Vrijmoeth, R. W. Stok, R. Veldman, W. A. Schoonveld, T. M. Klapwijk, J. Appl. Phys. 1998, 83, 3816.
- 45T. Sen, S. Bhattacharyya, S. Mandal, A. Patra, J. Fluorescence 2012, 22, 303.
- 46L. Lutterotti, Program MAUD Version 2.33 Available from: http://www.ing.unitn.it/∼maud/.
- 47R. A. Young, D. B. Wiles, J. Appl. Crystallogr. 1982, 15, 430.
- 48J. Gierschner, H. G. Mack, H. J. Egelhaaf, S. Schweizer, B. Doser, D. Oelkrug, Synth. Met. 2003, 138, 311.
- 49B. J. Schwartz, Nat. Mater. 2008, 7, 427.
- 50F. Meinardi, M. Cerminara, S. Blumstengel, A. Sassella, A. Borghesi, R. Tubino, Phys. Rev. B 2003, 67, 184–205.
- 51B.-K. An, S.-K. Kwon, S.-D. Jung, S. Y. Park, J. Am. Chem. Soc. 2002, 124, 14410.
- 52Z. H. Stachurski, Materials 2011, 4, 1564.
- 53Y. Zhao, H. Gao, Y. Fan, T. Zhou, Z. Su, Y. Liu, Y. Wang, Adv. Mater. 2009, 21, 3165.
- 54R. Wei, P. Song, A. Tong, J. Phys. Chem. C 2013, 117, 3467.
- 55S. H. Chen, A. C. Su, H. L. Chou, K. Y. Peng, S. A. Chen, Macromolecules 2004, 37, 167.
- 56D. Beljonne, G. Pourtois, C. Silva, E. Hennebicq, L. M. Herz, R. H. Friend, G. D. Scholes, S. Setayesh, K. Müllen, J. L. Brédas, Proc. Natl. Acad. Sci. USA 2002, 99, 10982.