Switchable Helical Structures Formed by the Hierarchical Self-Assembly of Laterally Tethered Nanorods
Trung Dac Nguyen
Department of Chemical Engineering and Department of Materials Science and Engineering University of Michigan Ann Arbor, MI 48109 (USA)
Search for more papers by this authorCorresponding Author
Sharon C. Glotzer
Department of Chemical Engineering and Department of Materials Science and Engineering University of Michigan Ann Arbor, MI 48109 (USA)
Department of Chemical Engineering and Department of Materials Science and Engineering University of Michigan Ann Arbor, MI 48109 (USA).Search for more papers by this authorTrung Dac Nguyen
Department of Chemical Engineering and Department of Materials Science and Engineering University of Michigan Ann Arbor, MI 48109 (USA)
Search for more papers by this authorCorresponding Author
Sharon C. Glotzer
Department of Chemical Engineering and Department of Materials Science and Engineering University of Michigan Ann Arbor, MI 48109 (USA)
Department of Chemical Engineering and Department of Materials Science and Engineering University of Michigan Ann Arbor, MI 48109 (USA).Search for more papers by this authorAbstract
The formation of helical scrolls formed by self-assembly of tethered nanorod amphiphiles and their molecular analogs are investigated. A model bilayer sheet assembled by laterally tethered nanorods is simulated and shown that it can fold into distinct helical morphologies under different solvent conditions. The helices can reversibly transform from one morphology to another by dynamically changing the solvent condition. This model serves both to inspire the fabrication of laterally tethered nanorods for assembling helices at nanometer scales and as a proof-of-concept for engineering switchable nanomaterials via hierarchical self-assembly.
References
- 1 R. A. Reddy, C. Tschierske, J. Mat. Chem. 2006, 16, 907.
- 2 F. S. Bates, G. H. Fredrickson, An. Rev. Physi. Chem. 1990, 41, 525.
- 3 S. Zhang, D. M. Marini, W. Hwang, S. Santoso, Current Opin. Chem. Biol. 2002, 6, 865.
- 4 A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, Jr, P. G. Schultz, Nature 1996, 382, 609.
- 5 S. Park, J.-H. Lim, S.-W. Chung, C. A. Mirkin, Science 2004, 303, 348.
- 6 Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker, M. Rubinstein, Nat. Mater. 2007, 6, 609.
- 7 J.-H. Ryu, M. Lee, Struc. Bond. 2008, 128, 63.
- 8 D. H. Gracias, V. Kavthekar, J. C. Love, K. E. Paul, G. M. Whitesides, Adv. Mater. 2002, 15, 235.
- 9 J. W. Ciszek, L. Huang, Y. Wang, C. A. Mirkin, Small 2008, 4, 206.
- 10 Y. Chen, B. Zhu, F. Zhang, Y. Han, Z. Bo, Angew. Chem. Int. Ed. 2008, 47, 6015.
- 11 M. A. Horsch, Z. Zhang, S. C. Glotzer, Nano Lett. 2006, 6, 2406.
- 12 D.-J. Hong, E. Lee, H. Jeong, J. Lee, W.-C. Zin, T. D. Nguyen, S. C. Glotzer, M. Lee, Angew. Chem. Int. Ed. 2009, 48, 1664.
- 13 J. C. Nelson, J. G. Saven, J. S. Moore, P. G. Wolynes, Science 1997, 277, 1793.
- 14 J. Borg, M. H. Jensen, K. Sneppen, G. Tiana, Phys. Rev. Lett. 2001, 86, 1031.
- 15 J. P. Kemp, Z. Y. Chen, Phys. Rev. Lett. 1998, 81, 3881.
- 16
R. A. Bertsch,
N. Vaidehi,
S. I. Chan,
W. A. Goddard, III,
Proteins: Struct. Funct. Gen.
1998,
33,
343.
10.1002/(SICI)1097-0134(19981115)33:3<343::AID-PROT4>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 17 H. M. Keizer, R. P. Sijbesma, Chem. Soc. Rev. 2005, 34, 226.
- 18 S. N. Fejer, D. J. Wales, Phys. Rev. Lett. 2007, 99, 086106.
- 19 H.-J. Kim, E. Lee, M. G. Kim, M.-C. Kim, M. Lee, E. Sim, Chem. Eur. J. 2008, 14, 3883.
- 20 S. C. Glotzer, M. J. Solomon, Nat. Mater. 2007, 6, 557.
- 21 Y. Yin, Y. Xia, J. Am. Chem. Soc. 2003, 125, 2048.
- 22 R. R. Price, W. J. Dressick, A. Singh, J. Am. Chem. Soc. 2003, 125, 11259.
- 23 S. A. Vanapalli, C. R. Iacovella, K. E. Sung, D. Mukhija, J. M. Millunchick, M. A. Burns, S. C. Glotzer, M. J. Solomon, Langmuir 2008, 24, 3661.
- 24 G. S. Grest, K. Kremer, Phys. Rev. A 1986, 33, 3628.
- 25 Z. Zhang, M. A. Horsch, M. H. Lamm, S. C. Glotzer, Nano Lett. 2003, 3, 1341.
- 26 C. R. Iacovella, M. A. Horsch, Z. Zhang, S. C. Glotzer, Langmuir 2005, 21, 9488.
- 27 M. A. Horsch, Z. Zhang, S. C. Glotzer, Phys. Rev. Lett. 2005, 95, 056105.
- 28 a) T. D. Nguyen, Z. Zhang, S. C. Glotzer, J. Chem. Phys. 2008, 129, 244903; b) E. R. Chan, X. Zhang, C. Y. Lee, M. Neurock, S. C. Glotzer, Macromolecules 2005, 38, 6168; c) X. Zhang, E. R. Chan, S. C. Glotzer, J. Chem. Phys. 2005, 123, 184718; d) E. R. Chan, L. C. Ho, S. C. Glotzer, J. Chem. Phys. 2006, 125, 064905; e) X. Zhang, Z.-L. Zhang, S. C. Glotzer, Nanotechnology 2007, 18, 115706; f) C. R. Iacovella, S. C. Glotzer, Nano Lett. 2009, 9, 1206.
- 29 T. Soddemann, B. Dunweg, K. Kremer, Eur. Phys. J. E 2002, 6, 409.
- 30 S. C. Glotzer, M. Solomon, N. Kotov, AIChE J. 2004, 50, 2978.
- 31 S. J. Plimpton, J. Comp. Phys. 1995, 117, 1.
- 32 J. P. Kemp, Z. Y. Chen, Biomacromolecules 2001, 2, 389.
- 33 J. N. Israelachvili, Intermolecular and Surface Forces, Academic, London 1992.
- 34 S. A. Sabeur, F. Hamdache, F. Schmid, Phys. Rev. E 2008, 77, 020802.