Indirect adaptive model predictive control and its application to uncertain linear systems
Corresponding Author
Stefano Di Cairano
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA
Correspondence Stefano Di Cairano, Mitsubishi Electric Research Laboratories, Cambridge, MA.
Email: [email protected]
Search for more papers by this authorClaus Danielson
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA
Search for more papers by this authorCorresponding Author
Stefano Di Cairano
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA
Correspondence Stefano Di Cairano, Mitsubishi Electric Research Laboratories, Cambridge, MA.
Email: [email protected]
Search for more papers by this authorClaus Danielson
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA
Search for more papers by this authorSummary
We consider constrained systems that are represented by uncertain models with unknown constant or slowly varying parameters. We propose an indirect adaptive model predictive control (IAMPC) approach where the prediction model can be adjusted during controller operation by a separately designed estimator that satisfies only a minimal set of assumptions. The controller guarantees constraint satisfaction despite the uncertainty in the parameters by means of a robust control invariant set, and input-to-state stability with respect to the estimation error by means of an appropriately designed method for adjusting the IAMPC prediction model and cost function based on the evolution of the parameter estimate. The controller has minimal computational overhead with respect to a nominal MPC and for the special case of uncertain linear systems, we obtain a constructive design procedure for the IAMPC which only solves quadratic programs during closed-loop control.
REFERENCES
- 1Rawlings JB, Mayne DQ. Model Predictive Control: Theory and Design. Madison, Wisconsin: Nob Hill; 2009.
- 2Di Cairano S. An industry perspective on MPC in large volumes applications: potential benefits and open challenges. In Proceedings of ZZZZ of the 4th IFAC Nonlinear Model Predictive Control Conference; Noordwijkerhout, NL; 2012:52-59.
- 3Di Cairano S, Kolmanovsky IV. Real-time optimization and model predictive control for aerospace and automotive applications. In Proceedings of ZZZZ of the American Control Conference; Milwaukee, WI; 2018:2392-2409.
- 4Grimm G, Messina MJ, Tuna SE, Teel AR. Examples of zero robustness in constrained model predictive control. In Proceedings of ZZZZ of the 42nd IEEE Conference on Decision and Control; Maui, HI; 2003:3724-3729.
- 5Kothare MV, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities. Automatica. 1996; 32(10): 1361-1379.
- 6Cuzzola FA, Geromel JC, Morari M. An improved approach for constrained robust model predictive control. Automatica. 2002; 38(7): 1183-1189.
- 7Langson W, Chryssochoos I, Raković SV, Mayne DQ. Robust model predictive control using tubes. Automatica. 2004; 40(1): 125-133.
- 8Fukushima H, Bitmead RR. Robust constrained predictive control using comparison model. Automatica. 2005; 41(1): 97-106.
- 9Mao W-J. Robust stabilization of uncertain time-varying discrete systems and comments on "An improved approach for constrained robust model predictive control". Automatica. 2003; 39(6): 1109-1112.
- 10Kim T-H, Sugie T. Adaptive receding horizon predictive control for constrained discrete-time linear systems with parameter uncertainties. Int J Control. 2008; 81(1): 62-73.
- 11Adetola V, DeHaan D, Guay M. Adaptive model predictive control for constrained nonlinear systems. Syst Control Lett. 2009; 58(5): 320-326.
- 12Aswani A, Gonzalez H, Sastry SS, Tomlin C. Provably safe and robust learning-based model predictive control. Automatica. 2013; 49(5): 1216-1226.
- 13Tanaskovic M, Fagiano L, Smith R, Morari M. Adaptive receding horizon control for constrained MIMO systems. Automatica. 2014; 50(12): 3019-3029.
- 14Lorenzen M, Allgöwer F, Cannon M. Adaptive model predictive control with robust constraint satisfaction. IFAC-PapersOnLine. 2017; 50(1): 3313-3318.
10.1016/j.ifacol.2017.08.512 Google Scholar
- 15Ostafew CJ, Schoellig AP, Barfoot TD, Collier J. Learning-based nonlinear model predictive control to improve vision-based mobile robot path tracking. J Field Robot. 2016; 33(1): 133-152.
- 16 Hewing L, Kabzan J, Zeilinger MN. Cautious model predictive control using Gaussian process regression. IEEE Trans Control Syst Technol. 2019; 1-8.
- 17Soloperto R, Müller MA, Trimpe S, Allgöwer F. Learning-based robust model predictive control with state-dependent uncertainty. IFAC-PapersOnLine. 2018; 51(20): 442-447.
10.1016/j.ifacol.2018.11.052 Google Scholar
- 18Rosolia U, Borrelli F. Learning model predictive control for iterative tasks. a data-driven control framework. IEEE Trans Autom Control. 2018; 63(7): 1883-1896.
- 19 Marafioti G, Bitmead RR, Hovd M. Persistently exciting model predictive control. Int J Adaptive Control Signal Processing. 2013; 28(6): 536-552.
- 20Rathouskỳ J, Havlena V. MPC-based approximate dual controller by information matrix maximization. Int J Adapt Control Signal Process. 2013; 27(11): 974-999.
- 21Heirung TAN, Ydstie BE, Foss B. Dual adaptive model predictive control. Automatica. 2017; 80: 340-348.
- 22Weiss A, Di Cairano S. Robust dual control MPC with guaranteed constraint satisfaction. In Proceedings of ZZZZ of the 53rd IEEE Conference Decision and Control; Los Angeles, CA; 2014:6713-6718.
- 23Cheng Y, Haghighat S, Di Cairano S. Robust dual control MPC with application to soft-landing control; Proc. American Control Confrence, Chicago, IL; 2015:3862-3867.
10.1109/ACC.2015.7171932 Google Scholar
- 24Mesbah A. Stochastic model predictive control with active uncertainty learning: a survey on dual control. Annual Reviews in Control. 2018; 45: 107-117.
- 25
Sehr MA, Bitmead RR. Probing and duality in stochastic model predictive control. In: S Rakovic, W Levine, eds. Handbook of Model Predictive Control. Switzerland: Birkhauser; 2019: 125-144.
10.1007/978-3-319-77489-3_6 Google Scholar
- 26Adetola V, Guay M. Finite-time parameter estimation in adaptive control of nonlinear systems. IEEE Trans Automatic Control. 2008; 53(3): 807-811.
- 27Daafouz J, Bernussou J. Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst Control Lett. 2001; 43(5): 355-359.
- 28Blanchini F, Miani S. Set-theoretic Methods in Control. New York, NY: Springer Science & Business Media; 2007.
- 29Di Cairano S. Indirect adaptive model predictive control for linear systems with polytopic uncertainty. In Proceedings of ZZZZ of the American Control Conference; Boston, MA, 2016:3570-3575.
- 30Fan D, Di Cairano S. Further results and properties of indirect adaptive model predictive control for linear systems with polytopic uncertainty. In Proceedings of ZZZZ of the American Control Conference; Boston, MA, 2016:2948-2953.
- 31Zhou J, Di Cairano S, Danielson C. Indirect adaptive MPC for output tracking of uncertain linear polytopic systems. In Proceedings of ZZZZ of the American Control Conference; Seattle, WA, 2017:3054-3059.
- 32Hrovat D, Di Cairano S, Tseng HE, Kolmanovsky IV. The development of model predictive control in automotive industry: a survey. In Proceedings of ZZZZ of the IEEE Conference Control Applications; Dubrovnik, HR, 2012:295-302.
- 33Limon D, Alamo T, Raimondo DM, et al. Input-to-state stability: a unifying framework for robust model predictive control. Nonlinear Model Predictive Control. New York, NY: Springer; 2009: 1-26.
10.1007/978-3-642-01094-1_1 Google Scholar
- 34Sontag ED. Smooth stabilization implies coprime factorization. IEEE Trans Automatic Control. 1989; 34(4): 435-443.
- 35Di Cairano S. Model adjustable predictive control with stability guarantees. In Proceedings of ZZZZ of the American Control Conference; Chicago, IL, 2015:226-231.
- 36Borrelli F, Bemporad A, Morari M. Predictive Control for Linear and Hybrid Systems. Cambridge, MA: Cambridge University Press; 2017.
10.1017/9781139061759 Google Scholar
- 37Huynh T, Lassez C, Lassez J-L. Practical issues on the projection of polyhedral sets. Ann Math Artif Intell. 1992; 6(4): 295-315.
10.1007/BF01535523 Google Scholar
- 38Herceg M, Kvasnica M, Jones CN, Morari M. Multi-parametric toolbox 3.0; Proc. European Control Conference, Zurich, CA, 2013:502-510.
10.23919/ECC.2013.6669862 Google Scholar
- 39Fleming J, Kouvaritakis B, Cannon M. Robust tube MPC for linear systems with multiplicative uncertainty. IEEE Trans Automat Control. 2014; 60(4): 1087-1092.
- 40Pannocchia G, Rawlings JB. The Velocity Algorithm LQR: A Survey. Tech. Report TWMCC-2001-004. Univ. Wisconsin, Madison: Dept. Chemical Engineering; 2001.
- 41Betti G, Farina M, Scattolini R. A robust MPC algorithm for offset-free tracking of constant reference signals. IEEE Trans Automat Control. 2013; 58(9): 2394-2400.
- 42Toh KC, Tutuncu RH, Todd MJ. On the implementation of SDPT3 (version 3.1)-a MATLAB software package for semidefinite-quadratic-linear programming; Proc. IEEE Int. Conf. Robotics and Automation, New Orleans, LA, 2004:290-296.
10.1109/CACSD.2004.1393891 Google Scholar
- 43Fukuda K. cdd/cdd+ Reference Manual. ETH-Zentrum Zurich, Switzerland: Institute for Operations Research; 1997.
- 44Raghunathan AU, Di Cairano S. Optimal step-size selection in alternating direction method of multipliers for convex quadratic programs and model predictive control. In Proceedings of ZZZZ of the International Symposium Mathematical Theory of Networks and Systems; Groningen, NL, 2014:807-814.
- 45Burns DJ, Danielson C, Zhou J, Di Cairano S. Reconfigurable model predictive control for multievaporator vapor compression systems. IEEE Trans Contr Syst Technol. 2017; 26(3): 984-1000.
- 46Di Cairano S, Brand M, Bortoff SA. Projection-free parallel quadratic programming for linear model predictive control. Int J Control. 2013; 86(8): 1367-1385.