Volume 28, Issue 6 pp. 2424-2441
RESEARCH ARTICLE

Distributed stochastic MPC for systems with parameter uncertainty and disturbances

Li Dai

Li Dai

School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China

Search for more papers by this author
Yuanqing Xia

Corresponding Author

Yuanqing Xia

School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China

Correspondence

Yuanqing Xia, School of Automation, Beijing Institute of Technology, Beijing 100081, China.

Email: [email protected]

Search for more papers by this author
Yulong Gao

Yulong Gao

ACCESS Linnaeus Center, KTH Royal Institute of Technology, Stockholm, Sweden

Search for more papers by this author
Mark Cannon

Mark Cannon

Department of Engineering Science, University of Oxford, Oxford, UK

Search for more papers by this author
First published: 24 January 2018
Citations: 23

Summary

A distributed stochastic model predictive control algorithm is proposed for multiple linear subsystems with both parameter uncertainty and stochastic disturbances, which are coupled via probabilistic constraints. To handle the probabilistic constraints, the system dynamics is first decomposed into a nominal part and an uncertain part. The uncertain part is further divided into 2 parts: the first one is constrained to lie in probabilistic tubes that are calculated offline through the use of the probabilistic information on disturbances, whereas the second one is constrained to lie in polytopic tubes whose volumes are optimized online and whose facets' orientations are determined offline. By permitting a single subsystem to optimize at each time step, the probabilistic constraints are then reduced into a set of linear deterministic constraints, and the online optimization problem is transformed into a convex optimization problem that can be performed efficiently. Furthermore, compared to a centralized control scheme, the distributed stochastic model predictive control algorithm only requires message transmissions when a subsystem is optimized, thereby offering greater flexibility in communication. By designing a tailored invariant terminal set for each subsystem, the proposed algorithm can achieve recursive feasibility, which, in turn, ensures closed-loop stability of the entire system. A numerical example is given to illustrate the efficacy of the algorithm.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.