Delay and state observation for SISO nonlinear systems with input delay
Corresponding Author
Vincent Léchappé
Griffith University, School of Engineering, Gold Coast, Australia
Correspondence
Vincent Léchappé, Griffith University, School of Engineering, Gold Coast, Australia.
Email: [email protected]
Search for more papers by this authorJesús De Léon
Facultad de Ingeniería Mecánica y Eléctrica (FIME), Universidad Autónoma de Nuevo León, Monterrey, Mexico
Search for more papers by this authorEmmanuel Moulay
XLIM, Université de Poitiers, UMR CNRS 7252, Poitiers, France
Search for more papers by this authorFranck Plestan
Ecole Centrale de Nantes-LS2N, UMR CNRS 6004, Nantes, France
Search for more papers by this authorAlain Glumineau
Ecole Centrale de Nantes-LS2N, UMR CNRS 6004, Nantes, France
Search for more papers by this authorCorresponding Author
Vincent Léchappé
Griffith University, School of Engineering, Gold Coast, Australia
Correspondence
Vincent Léchappé, Griffith University, School of Engineering, Gold Coast, Australia.
Email: [email protected]
Search for more papers by this authorJesús De Léon
Facultad de Ingeniería Mecánica y Eléctrica (FIME), Universidad Autónoma de Nuevo León, Monterrey, Mexico
Search for more papers by this authorEmmanuel Moulay
XLIM, Université de Poitiers, UMR CNRS 7252, Poitiers, France
Search for more papers by this authorFranck Plestan
Ecole Centrale de Nantes-LS2N, UMR CNRS 6004, Nantes, France
Search for more papers by this authorAlain Glumineau
Ecole Centrale de Nantes-LS2N, UMR CNRS 6004, Nantes, France
Search for more papers by this authorSummary
This paper deals with the problem of state and delay estimation for SISO nonlinear systems with an unknown time-varying delay in the input. The main idea is to approximate the delayed input by using Taylor's theorem and to create an extended system with the delay as part of the extended state. Then, the construction of an observer is proposed to estimate both state and delay. The results are illustrated by simulations.
REFERENCES
- 1Gao H, Chen T, Lam J. A new delay system approach to network-based control. Automatica. 2008; 44(1): 39-52.
- 2Smith OJM. Closer control of loops with dead time. Chem Eng Prog. 1957; 53(5): 217-219.
- 3O'Dwyer A. A survey of techniques for the estimation and compensation of processes with time delay. Technical Report AOD.00.03. Dublin, Ireland: Dublin Institute of Technology; 2000.
- 4Clifford G. Time delay estimation for passive sonar signal processing. IEEE Trans Acoust Speech Signal Process. 1981; 29(3): 463-470.
10.1109/TASSP.1981.1163560 Google Scholar
- 5Knapp C, Carter GC. The generalized correlation method for estimation of time delay. IEEE Trans Acoust Speech Signal Process. 1976; 24(4): 320-327.
- 6Jacovitti G, Scarano G. Discrete time techniques for time delay estimation. IEEE Trans Signal Process. 1993; 41(2): 525-533.
- 7Björklund S. A survey and comparison of time-delay estimation methods in linear systems. [PhD thesis]. Linköping, Sweden: Linköping University; 2003.
- 8Agarwal M, Canudas C. On-line estimation of time delay and continuous-time process parameters. Paper presented at: American Control Conference; 1986; Seattle, WA.
- 9Tuch J, Feuer A, Palmor ZJ. Time delay estimation in continuous linear time-invariant systems. IEEE Trans Autom Control. 1994; 39(4): 823-827.
- 10Nihtilä M, Damak T, Babary JP. On-line estimation of the time delay via orthogonal collocation. Simul Pract Theory. 1997; 5(2): 101-120.
10.1016/0928-4869(95)00052-6 Google Scholar
- 11Diop S, Kolmanovsky I, Moraal PE, van Nieuwstadt M. Preserving stability-performance when facing an unknown time-delay. Control Eng Pract. 2001; 9(12): 1319-1325.
- 12Drakunov SV, Perruquetti W, Richard JP, Belkoura L. Delay identification in time-delay systems using variable structure observers. Annu Rev Control. 2006; 30(2): 143-158.
- 13Belkoura L, Richard JP, Fliess M. Convolution approach for delay systems identification. Paper presented at: 17th IFAC World Congress; 2008; Seoul, South Korea.
- 14Belkoura L, Richard JP, Fliess M. Parameters estimation of systems with delayed and structured entries. Automatica. 2009; 45(5): 1117-1125.
- 15Bresch-Pietri D, Krstic M. Delay-adaptive predictor feedback for systems with unknown long actuator delay. IEEE Trans Autom Control. 2010; 55(9): 2106-2112.
- 16Gaudette DL, Miller DE. Stabilizing a SISO LTI plant with gain and delay margins as large as desired. IEEE Trans Autom Control. 2014; 59(9): 2324-2339.
- 17Sename O. New trends in design of observers for time-delay systems. Kybernetika. 2001; 37(4): 427-458.
- 18Ghanes M, de León Morales J, Barbot JP. Observer design for nonlinear systems under unknown time-varying delays. IEEE Trans Autom Control. 2013; 58(6): 1529-1534.
- 19Cacace F, Germani A, Manes C. An observer for a class of nonlinear systems with time varying observation delay. Syst Control Lett. 2010; 59(5): 305-312.
- 20Farza M, Sboui A, Cherrier E, M'Saad M. High-gain observer for a class of time-delay nonlinear systems. Int J Control. 2010; 83(2): 273-280.
- 21Ghanes M, de León J, Barbot JP. Simultaneous observation and identification for nonlinear systems under unknown time-varying delays. J Franklin Inst. 2016; 353(10): 2305-2318.
- 22Cacace F, Conte F, Germani A, Palombo G. Delay identification for a class of nonlinear systems. Int J Control. 2016; 89(11): 2350-2359.
- 23Léchappé V, De Léon J, Moulay E, Plestan F, Glumineau A. Delay and state observer for SISO LTI systems. Paper presented at: American Control Conference; 2015; Chicago, IL.
- 24Léchappé V, De Léon J, Moulay E, Plestan F, Glumineau A. Interconnected delay and state observer for nonlinear system with input delay. Paper presented at: American Control Conference; 2016; Boston, MA.
- 25Gauthier JP, Bornard G. Observability for any u(t) of a class of nonlinear systems. IEEE Trans Autom Control. 1981; 26(4): 922-926.
10.1109/TAC.1981.1102743 Google Scholar
- 26Na J, Ren X, Xia Y. Adaptive parameter identification of linear SISO systems with unknown time-delay. Syst Control Lett. 2014; 66(0): 43-50.
- 27Hermann R, Krener AJ. Nonlinear controllability and observability. IEEE Trans Autom Control. 1977; 22(5): 728-740.
- 28Gauthier JP, Hammouri H, Othman S. Simple observer for nonlinear systems applications to bioreactors. IEEE Trans Autom Control. 1992; 37(6): 875-880.
- 29Busawon KK, Farza M, Hammouri H. Observer design for a special class of nonlinear systems. Int J Control. 1998; 71(3): 405-418.
- 30Busawon KK, de León Morales J. An observer design for uniformly observable non-linear systems. Int J Control. 2000; 73(15): 1375-1381.
- 31Lavretsky E, Gibson TE, Annaswamy AM. Projection operator in adaptive systems. ArXiv:1112.4232; 2011.
- 32Ioannou PA, Sun J. Robust Adaptive Control. Dover Books on Electrical Engineering. New York, NY: Dover Publication; 2012.
- 33Khalil HK. Nonlinear Systems. 3rd ed. Upper Saddle River, NJ:Prentice Hall; 2002.
- 34Levant A. Sliding order and sliding accuracy in sliding mode control. Int J Control. 1993; 58(6): 1247-1263.