Character of the electronic ground state and of charge-transfer excited states in ionic solids: An ab initio cluster model approach
Jordi Casanovas
Dept. Química Física, Grup de Química Quàntica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
Search for more papers by this authorAmparo Lorda
Dept. Química Física, Grup de Química Quàntica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
Search for more papers by this authorCarmen Sousa
Dept. Química Física, Grup de Química Quàntica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
Search for more papers by this authorFrancesc Illas
Dept. Química Física, Grup de Química Quàntica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
Search for more papers by this authorJordi Casanovas
Dept. Química Física, Grup de Química Quàntica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
Search for more papers by this authorAmparo Lorda
Dept. Química Física, Grup de Química Quàntica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
Search for more papers by this authorCarmen Sousa
Dept. Química Física, Grup de Química Quàntica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
Search for more papers by this authorFrancesc Illas
Dept. Química Física, Grup de Química Quàntica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
Search for more papers by this authorAbstract
The electronic structure of the ground electronic state and of some special charge-transfer excited states in ionic solids is examined from the ab initio cluster model approach. Different ab initio wave functions, including a frozen orbital approach, the Hartree–Fock self-consistent field, and multireference configuration interaction wave functions, are considered and analyzed using different theoretical techniques. We explicitly consider some alkaline–earth oxides such as CaO, a more difficult case such as A12O3, a transition-metal oxide such as NiO, and a system with a more complicated structure such as KNiF3. Analysis of ab initio wave functions in terms of valence bond components shows that all these compounds are largely ionic, thus supporting the simple picture arising from the ionic model. However, the nature of the excited states is more complex. Alkaline–earth oxides lowest excited states are essentially described as charge-transfer excitations dominated by a single resonant valence bond structure and the calculated energy difference is comparable to the experimental optical gap. In the case of A12O3, the electronic spectra presents excitonic features and the local charge-transfer excitation excited states provide a reasonable representation of these phenomena. Finally, several different valence bond structures are present in the lowest electronic states of KNiF3. © 1994 John Wiley & Sons, Inc.
Bibliography
- 1 S. Sugano and R. G. Schulman, Phys. Rev. B 130, 517 (1963).
- 2 J. W. Richardson, D. M. Vaught, T. F. Soules, and R. R. Powell, J. Chem. Phys. 50, 3633 (1969).
- 3 A. J. H. Watchers and W. C. Nieuwpoort, Phys. Rev. B 5, 4291 (1972).
- 4 L. Pueyo and J. W. Richardson, J. Chem. Phys. 67, 3583 (1977).
- 5 P. S. Bagus and U. Wahlgren, Mol. Phys. 33, 641 (1977).
- 6 N. W. Winter, R. M. Pitzer, and D. K. Temple, J. Chem. Phys. 86, 3549 (1987); J. Chem. Phys. 87, 2945 (1987).
- 7 N. W. Winter and R. M. Pitzer, J. Chem. Phys. 89, 446 (1988).
- 8 Z. Barandiaran and L. Seijo, J. Chem. Phys. 89, 5739 (1988).
- 9 A. B. Kunz, J. Meng, and J. M. Vail, Phys. Rev. B 38, 1064 (1988).
- 10 V. Luaña, J. M. Recio, and L. Pueyo, Phys. Rev. B 42, 1791 (1990).
- 11 J. Q. Broughton and P. S. Bagus, Phys. Rev. B 30, 4761 (1984); J. Q. Broughton and P. S. Bagus, Phys. Rev. B 36, 2813 (1987).
- 12 G. J. M. Janssen and W. C. Nieuwpoort, Phys. Rev. B 38, 3449 (1988).
- 13
H. J. Boer and
E. J. W. Worvey,
Proc. Phys. Soc.
49, 59
(1937).
10.1088/0959-5309/49/4S/307 Google Scholar
- 14 F. Bloch, Z. Phys. 57, 545 (1929); A. H. Wilson, Proc. R. Soc. Lond. Ser. A, 133, 458 (1931).
- 15 A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).
- 16 W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).
- 17 D. J. Singh and W. E. Pickett, Phys. Rev. B. 44, 7715 (1991).
- 18 V. I. Anisimov, M. A. Korotin, and E. Z. Kurmaev, J. Phys. Condensed Matter 2, 3973 (1990).
- 19 N. F. Mott, Metal Insulator Transitions (Taylor & Francis, London, 1974).
- 20 N. F. Mott, Proc. Phys. Soc. Lond. Ser. A 6, 416 (1949).
- 21 J. Hubbard, Proc. Phys. Soc. Lond. Ser. A 277, 237 (1964).
- 22 P. W. Anderson, Phys. Rev. 115, 2 (1959); P. W. Anderson, Solid. State Phys. 14, 99 (1963).
- 23 A. Fujimori, F. Minami, and S. Sugano, Phys. Rev. B 29, 5225 (1984).
- 24 G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 5225 (1984).
- 25 J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 65 (1985).
- 26 J. Zaanen, G. A. Sawatzky, and J. W. Allen, J. Magn. Magnet. Mater. 54–57, 607 (1986).
- 27 J. B. Torrance, Ph. Lacorre, C. Asavaroengchai, and R. M. Metzger, J. Solid State Chem. 90, 168 (1991).
- 28 J. B. Torrance, Ph. Lacorre, C. Asavaroengchai, and R. M. Metzger, Physica C 182, 351 (1991).
- 29 A. Lorda, F. Illas, J. Rubio, and J. B. Torrance, Phys. Rev. B 47, 6207 (1993).
- 30 A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984).
- 31 R. S. Knox, Solid State Physics (Academic Press, New York, 1963).
- 32
R. Hilsch and
R. W. Pohl,
Z. Phys.
48, 384
(1928);
Z. Phys.
57, 145
(1929);
Z. Phys.
59, 812
(1930).
10.1007/BF01339647 Google Scholar
- 33 C. Sousa, J. Casanovas, J. Rubio, and F. Illas, J. Comput. Chem. 14, 680 (1993).
- 34 Ph. Durand and J. C. Barthelat, Theor. Chim. Acta 38, 283 (1975).
- 35 M. Pelissier and Ph. Durand, Theor. Chim. Acta 55, 43 (1980).
- 36 G. Pacchioni, C. Sousa, F. Illas, P. S. Bagus, and F. Parmigiani, Phys. Rev. B 48, 11573 (1993).
- 37 F. Illas, A. Lorda, J. Rubio, J. B. Torrance, and P. S. Bagus, J. Chem. Phys. 99, 389 (1993).
- 38 C. Sousa, F. Illas, and G. Pacchioni, J. Chem. Phys. 99, 6818 (1993).
- 39 P. S. Bagus, K. Hermann, and C. W. Bauschlicher, J. Chem. Phys. 80, 4378 (1984).
- 40 P. S. Bagus, K. Hermann, and C. W. Bauschlicher, J. Chem. Phys. 81, 1966 (1984).
- 41 P. S. Bagus and F. Illas, J. Chem. Phys. 96, 8962 (1992).
- 42 G. Pacchioni and P. S. Bagus, Surf. Sci. 270, 669 (1992).
- 43 B. Huron, P. Rancurel, and J. P. Malrieu, J. Chem. Phys. 75, 5745 (1973).
- 44 S. Evangelisti, J. P. Daudey, and J. P. Malrieu, Chem. Phys. Lett. 75, 91 (1983).
- 45 F. Illas, J. Rubio, J. M. Ricart, and P. S. Bagus, J. Chem. Phys. 95 (3), 1877 (1991).
- 46 A. Povill, J. Rubio, and F. Illas, Theor. Chim. Acta 82, 229 (1992).
- 47 R. Caballol and J. P. Malrieu, Chem. Phys. Lett. 188, 543 (1992).
- 48 M. Dupuis, J. Rys, and H. F. King, HONDO-76, program 338, QCPE (University of Indiana, Bloomington, IN 47401). Pseudopotential adaptation by J. P. Daudey and M. Pelissier. General ROHF adaptation by R. Caballol and J. P. Daudey. CIPSI chain of programs by M. Pellisier, J. P. Daudey, J. P. Malrieu, S. Evangelisti, F. Spiegelmann, D. Maynau, J. Rubio, and F. Illas.
- 49 W. C. Mackrodt, N. M. Harrison, V. R. Sauders, N. L. Allan, M. D. Towler, E. Aprá, and R. Dovesi, preprint.
- 50 E. T. Arakawa and M. W. Williams, J. Phys. Chem. Solids 29, 735 (1968).
- 51 J. Lewis, D. Schwarzenbach, and H. D. Flack, Acta Crystallogr. Sect. A 38, 733 (1982).
- 52 A. Kirfel and K. Eichhorn, Acta Crystallogr. Sect. A 46, 271 (1990).
- 53 J. A. Tossell, J. Phys. Chem. Solids 36, 1273 (1975).
- 54 A. Balzarotti, F. Antonangeli, R. Girlanda, and G. Martino, Phys. Rev. B 29, 5903 (1984).
- 55 R. A. Evarestov, A. N. Ermoshkin, and V. A. Lovchikov, Phys. Status Sol. B 99, 387 (1980).
- 56 S. Nagel, J. Phys. C 18, 3673 (1985).
- 57 I. P. Batra, J. Phys. C 15, 5399 (1982).
- 58 S. Ciraci and I. P. Batra, Phys. Rev. B 28, 982 (1983).
- 59 M. Causa, R. Dovesi, C. Roetti, E. Kotomin, and V. R. Saunders, Chem. Phys. Lett. 140, 120 (1987).
- 60 C. Pisani, M. Causa, R. Dovesi, and C. Roetti, Prog. Surf. Sci. 25, 119 (1987).
- 61 A. S. Brown and M. A. Spackman, J. Phys. Chem. 96, 9200 (1992).
- 62 L. Salasco, R. Dovesi, R. Orlando, M. Causa, and V. R. Saunders, Mol. Phys. 72, 267 (1991).
- 63
W. H. Strelow and
E. L. Cook,
J. Phys. Chem. Ref. Data
2, 163
(1973).
10.1063/1.3253115 Google Scholar
- 64 R. C. Whited, C. J. Flaten, and W. C. Walker, Solid State Commun. 13, 1903 (1973).
- 65 R. Pandey, J. E. Jaffe, and B. Kunz, Phys. Rev. B 43, 9228 (1991).
- 66 J. Casanovas and F. Illas, to be published.
- 67 H. Onuki, F. Sugawara, Y. Nishihara, Y. Yamaguchi, A. Ejiri, H. Takahashi, and H. Abe, Solid State Commun., 20, 35 (1976).
- 68 A. Lorda and F. Illas, work in progress.
- 69 C. Sousa and F. Illas, work in progress.