The valence bond description of conjugated molecules i.SCFlevel
P. C. Hiberty
Laboratoire de Chimie Théorique (490), Université de Paris-Sud, F-91405 Orsay, France
Search for more papers by this authorG. Ohanessian
Laboratoire de Chimie Théorique (490), Université de Paris-Sud, F-91405 Orsay, France
Search for more papers by this authorP. C. Hiberty
Laboratoire de Chimie Théorique (490), Université de Paris-Sud, F-91405 Orsay, France
Search for more papers by this authorG. Ohanessian
Laboratoire de Chimie Théorique (490), Université de Paris-Sud, F-91405 Orsay, France
Search for more papers by this authorAbstract
Aiming at developing an approximate method to get good quality valence bond functions for any closed-shell delocalized system, we analyze their SCF functions in terms of weighted bonding schemes, and investigate the general rules relating the weights of ionic structures to those of covalent ones. The butadiene case is treated in details, and the results are generalized to all closed shell singlet conjugated molecules. It is demonstrated that, contrary to what an intuitive generalization of the two-electron-two-center model would predict, each bond is not described as a half-covalent, half-ionic entity, but that the ionic component is significantly preponderant. Some consequences on the behavior of conjugated systems under the influence of an electric field are discussed.
Bibliography
- 1 D. Maynau, M. Said and J. P. Malrieu, J. Am. Chem. Soc. 105, 5244 (1983).
- 2 C. Brauchle, H. Kabza, and J. Voitlander, Z. Naturfosch Teil A 34, 265 (1979); J. Mol. Struct. 60, 161 (1980); Chem. Phys. 32, 63 (1978).
- 3 C. Brauchle and J. Voitlander, Tetrahedron 38, 279 (1982).
- 4 R. D. Harcourt, Aust. J. Chem. 22, 279 (1969); R. D. Harcourt and A. Harcourt, J. Chem. Soc. Faraday Trans. 2, 70, 743 (1974); R. D. Harcourt, Theor. Chim. Acta 2, 437 (1964); Theor. Chim. Acta 4, 202 (1966); Theor. Chim. Acta 6, 131 (1966); R. D. Harcourt, Int. J. Quantum Chem. 4, 173 (1970); R. D. Harcourt and J. F. Sillitoe, Aust. J. Chem. 27, 691 (1974).
- 5 K. B. Lipkowitz, J. Am. Chem. Soc. 104, 2647 (1982); R. R. Fraser, A. J. Ragauskas, and J. B. Stothers, J. Am. Chem. Soc. 104, 6475 (1982); D. J. Craik, G. C. Levy, and R. T. C. Brownlee, J. Org. Chem. 48, 1601 (1982); J. Bromilow, R. T. C. Brownlee, D. J. Craik, M. Sadek, and R. W. Taft, J. Org. Chem. 45, 2429 (1980).
- 6 E. Clar, The Aromatic Sextet (Wiley, London, 1972).
- 7 S. El-Basil, Int J. Quantum Chem. 21, 771 (1982); Int J. Quantum Chem. 21, 779 (1982); Int J. Quantum Chem. 21, 793 (1982).
- 8 I. Gutman and N. Trinajstic, Top. Curr. Chem. 42, 49 (1973).
- 9 O. E. Polansky and G. Derflinger, Int. J. Quantum Chem. 1, 379 (1967).
- 10 A. Graovac, I. Gutman, M. Randic, and N. Trinajstic, J. Am. Chem. Soc. 95, 6267 (1973).
- 11 For a review, see G. A. Gallup, R. L. Vance, J. R. Collins, and J. M. Norbeck, Adv. Quantum Chem. 16, 229 (1982), and references therein.
- 12 G. F. Tantardini and M. Simonetta, Int. J. Quantum Chem. 20, 705 (1981); Int. J. Quantum Chem. 15, 655 (1979); G. F. Tantardini, M. Raimondi, and M. Simonetta, J. Am. Chem. Soc. 99, 2913 (1977); M. Raimondi and M. Simonetta, Mol. Phys. 34, 745 (1977); M. Raimondi, M. Simonetta, and G. F. Tantardini, J. Chem. Phys. 56, 5091 (1972); M. Simonetta, E. Gianinetti, and I. Vandani, J. Chem. Phys. 48, 1579 (1968); G. F. Tantardini and M. Simonetta, Int. J. Quantum Chem. Quantum Chem. Symp. 12, 131 (1978).
- 13 R. D. Harcourt and W. Roso, Can. J. Chem. 56, 1093 (1978).
- 14 P. C. Hiberty and C. Leforestier, J. Am. Chem. Soc. 100, 2012 (1978); P. C. Hiberty, Int. J. Quantum Chem. 19, 259 (1981).
- 15 R. S. Mulliken, Phys. Rev. 41, 49 (1932); J. C. Slater, J. Chem. Phys. 43, S11 (1965).
- 16 W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, “GAUSSIAN 70,” Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind, Program No. 236.
- 17 W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657 (1970).
- 18 G. Rumer, Nachr. d. Ges. d. Wiss zu Göttingen, M. P. Klasse 377 (1932).
- 19 L. Pauling, J. Chem. Phys. 1, 280 (1933).
- 20 W. J. Hehre, L. Radom, and J. A. Pople, J. Am. Chem. Soc. 94, 1496 (1972).
- 21 W. J. Hehre and J. A. Pople, J. Am. Chem. Soc. 92, 2191 (1970).
- 22 W. F. Reynolds, P. Dais, D. W. MacIntyre, R. D. Topsom, S. Marriott, E. von Nagy-Felsobuki, and R. W. Taft, J. Am. Chem. Soc. 105, 378 (1983).