Nonempirical calculations on diatomic transition metals. II. RHF investigation of lowest closed-shell states of homonuclear 3d transition-metal dimers†
Andreas Wolf
Institut für Theoretische Chemie, Universität Düsseldorf, Universitätsstraße, 1, D-4000 Düsseldorf 1, Germany
Search for more papers by this authorHans-Herbert Schmidtke
Institut für Theoretische Chemie, Universität Düsseldorf, Universitätsstraße, 1, D-4000 Düsseldorf 1, Germany
Search for more papers by this authorAndreas Wolf
Institut für Theoretische Chemie, Universität Düsseldorf, Universitätsstraße, 1, D-4000 Düsseldorf 1, Germany
Search for more papers by this authorHans-Herbert Schmidtke
Institut für Theoretische Chemie, Universität Düsseldorf, Universitätsstraße, 1, D-4000 Düsseldorf 1, Germany
Search for more papers by this authorFor No. I in this series, see Ref. 31.
Abstract
Potential-energy curves of the 3d dimer series Sc2 through Cu2 are calculated for the lowest closed-shell states within the nonempirical RHF formalism using limited basis sets of minimal to near-double-zeta–plus-polarization size. Calculated spectroscopic constants are compared to semiempirical results as well as to experimental estimates. The possibility for closed- or open-shell ground states is discussed for each dimer. For diatomic Sc and Cu a detailed study of basis set effects on calculated molecular constants is carried out.
Bibliography
- 1 G. Verhaegen, S. Smoes, and J. Drowart, J. Chem. Phys. 40, 239 (1964).
- 2 A. Kant and S. S. Lin, J. Chem. Phys. 51, 1644 (1969).
- 3 T. A. Ford, H. Huber, W. Klotzbücher, E. P. Kündig, M. Moskovits, and G. A. Ozin, J. Chem. Phys. 66, 524 (1977).
- 4 A. Kant and B. Strauss, J. Chem. Phys. 45, 3161 (1966).
- 5 A. Kant, S. S. Lin, and B. Strauss, J. Chem. Phys. 49, 1983 (1968).
- 6 S. Lin and A. Kant, J. Phys. Chem. 73, 2450 (1969).
- 7 A. Kant and B. Strauss, J. Chem. Phys. 41, 3806 (1964).
- 8 A. Kant, J. Chem. Phys. 41, 1872 (1964).
- 9 D. N. Travis and R. F. Barrow, Proc. Chem. Soc. Lond. 64 (1962); N. Aslund, R. F. Barrow, W. G. Richards, and D. N. Travis, Ark. Fys. 30, 171 (1965).
- 10 P. Schissel, J. Chem. Phys. 26, 1276 (1957).
- 11 M. Ackerman, F. E. Stafford, and J. Drowart, J. Chem. Phys. 33, 1784 (1960).
- 12 J. Ruamps, C. R. Acad. Sci. 237, 1489 (1954).
- 13 J. Ruamps, C. R. Acad. Sci. 239, 1200 (1954).
- 14 J. G. Winans, Phys. Rev. 37, 902 (1931).
- 15 J. G. Winans and M. P. Heitz, Z. Phys. 133, 29 (1); Z. Phys. 135, 406 (1953).
- 16 K. D. Carlson and K. R. Kushnir, J. Phys. Chem. 68, 1566 (1964).
- 17 W. F. Cooper, G. A. Clarke, and C. R. Hare, J. Phys. Chem. 76, 2268 (1972).
- 18 A. B. Anderson, J. Chem. Phys. 64, 4046 (1976).
- 19 R. K. Nesbet, Phys. Rev. 135, A460 (1964).
- 20 N. Rösch and T. N. Rhodin, Phys. Rev. Lett. 32, 1189 (1974).
- 21 T. H. Upton and W. A. Goddard III, J. Am. Chem. Soc. 100, 5659 (1978).
- 22 P. Joyes and M. Leleyter, J. Phys. B. 6, 150 (1973).
- 23 R. C. Baetzold, J. Catal. 29, 129 (1973).
- 24 A. B. Anderson, J. Chem. Phys. 66, 5108 (1977).
- 25 R. C. Baetzold, J. Chem. Phys. 55, 4355 (1971).
- 26 C. R. Hare, T. P. Sleight, W. Cooper, and G. A. Clarke, Inorg. Chem. 7, 669 (1968).
- 27 A. B. Anderson, J. Chem. Phys. 68, 1744 (1978).
- 28 J. Harris and R. O. Jones, J. Chem. Phys. 70, 830 (1979).
- 29 J. C. A. Boeyens and R. H. Lemmer, J. Chem. Soc. Faraday Trans. II 73, 321 (1977).
- 30 P. J. Hay, T. H. Dunning, and R. C. Raffenetti, J. Chem. Phys. 65, 2679 (1976).
- 31 H.-H. Schmidtke and A. Wolf, Chem. Phys. Lett. 50, 451 (1977).
- 32
F. F. Abraham,
Homogeneous Nucleation Theory
(Academic, New York,
1974).
10.1016/B978-0-12-038361-0.50007-7 Google Scholar
- 33 J. Hecht, J. D. Eversole, and H. P. Broida, J. Appl. Phys. 48, 1503 (1971).
- 34 D. V. Walton, J. Chem. Phys. 37, 2182 (1962).
- 35 F. Trautweiler, Photogr. Sci. Eng. 12, 138 (1968).
- 36 J. F. Hamilton, J. Vac. Sci. Technol. 13, 319 (1976).
- 37 R. Van Hardeveld and F. Hartog., Adv. Catal. 22, 75 (1972).
- 38 J. R. Anderson, Structure of Metallic Catalysts (Academic, New York, 1975).
- 39 P. G. Cartier and R. R. Rye, J. Catal. 32, 88 (1974).
- 40 A. B. Anderson, Chem. Phys. Lett. 35, 498 (1975).
- 41 D. E. Eckstrom, R. M. Hill, D. C. Lorents, and H. H. Nakamo, Chem. Phys. Lett. 23, 112 (1973).
- 42 R. H. Hill, D. J. Eckstrom, D. C. Lorents, and H. H. Nakamo, Appl. Phys. Lett. 23, 373 (1973).
- 43 D. C. Lorents, R. H. Hill, and D. J. Eckstrom, Molecular Metal Lasers (Stanford Research Institute, Menlo Park, CA, 1972–1973), Semiannual Technical Reports Nos. 1 and 2.
- 44 L. Pauling, J. Am. Chem. Soc. 69, 542 (1947).
- 45 R. M. Badger, J. Chem. Phys. 2, 128 (1934); J. Chem. Phys. 3, 710 (1935).
- 46
R. Mecke,
Z. Phys.
32,
813
(1925).
10.1007/BF01331717 Google Scholar
- 47 A. B. Anderson, J. Chem. Phys. 62, 1187 (1975).
- 48 B. Roos, A. Veillard, and G. Vinot, Theor. Chim. Acta 20, 1 (1971).
- 49 H. Basch, C. J. Hornback, and J. W. Moskowitz, J. Chem. Phys. 51, 1311 (1969).
- 50 A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).
- 51 H. F. Schaefer III, The Electronic Structure of Atoms and Molecules (Addison–Wesley, London, 1972).
- 52 Y. M. Efremov, A. N. Samoilava, and L. V. Gurvich, Opt. Spectrosc. (USSR) 36, 381 (1974).
- 53 E. P. Kundig, M. Moskovits, and G. A. Ozin, Nature (Lond.) 254, 503 (1975).
- 54 D. Goutier, R. Macaulay, and A. J. Duke, PHANTOM 72, QCPE 11, 241 (1974).
- 55 D. B. Neumann, H. Basch, R. L. Kornegay, L. C. Synder, J. W. Moskowitz, C. Hornback, and S. P. Liebman, POLYATOM II, QCPE 11, 199 (1971).
- 56 A. Wolf, U. Voets, and H.-H. Schmidtke, Theor. Chim. Acta 54, 229 (1980).
- 57 R. C. Raffenetti, Chem. Phys. Lett. 20, 335 (1973).
- 58 N. M. Winter and T. H. Dunning, Chem. Phys. Lett. 8, 169 (1971).
- 59 P. G. Tuttler, STACKLIB—The CDC 7600 as a Parallel/Vector Computer, Applied Mathematics Unit, Lawrence Livermore Laboratory (Babcock & Wilcox, Nuclear Power Generation Division, Lynchburg, VA, 1974).