Asymmetric electronic deformation in graphene molecular capacitors
S. Salehfar
Chemistry Department, College of Sciences, Yasouj University, Yasouj, Iran
Search for more papers by this authorCorresponding Author
S. M. Azami
Chemistry Department, College of Sciences, Yasouj University, Yasouj, Iran
Correspondence
S. M. Azami, Chemistry Department, College of Sciences, Yasouj University, Yasouj, Iran.
Email: [email protected]
Search for more papers by this authorS. Salehfar
Chemistry Department, College of Sciences, Yasouj University, Yasouj, Iran
Search for more papers by this authorCorresponding Author
S. M. Azami
Chemistry Department, College of Sciences, Yasouj University, Yasouj, Iran
Correspondence
S. M. Azami, Chemistry Department, College of Sciences, Yasouj University, Yasouj, Iran.
Email: [email protected]
Search for more papers by this authorAbstract
Asymmetric deformation density analysis is applied on bilayer graphene flakes as molecular capacitors to identify the extent of asymmetric distribution of electrons and holes when exposed to bias voltage. Three triangular, orthorhombic, and hexagonal symmetries for graphene flakes are considered in two sizes and electric field potential is applied along the vector perpendicular to graphene flakes' plane to simulate 1–4 V as the bias voltage applied to molecular-scale capacitors The number of electrons responsible for asymmetric distribution of electrons and holes, and occupied to virtual transfer are calculated, and electric field deformation density analysis is also performed that shows distributions of electrons and holes are quite asymmetric for the orthorhombic symmetry, while for the other symmetries, they are almost image of each other. It was found that isosurfaces of deformation density distribution possess a multilayer structure and accretion and depletion of electrons can be taken place between flakes or outside the parallel flakes, and it is shown that bias voltage is able to significantly remove symmetry of electrons and holes distribution. Inspection of molecular orbitals showed that electric field could change the energetic order of molecular orbitals, so that occupancy inversion is occurred for the orthorhombic systems that is responsible for their extraordinary properties.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
qua27426-sup-0001-Supinfo.docxWord 2007 document , 593 KB | Table S1. , , , and for five interim systems at 4 V. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1H. Wang, H. S. Wang, C. Ma, L. Chen, C. Jiang, C. Chen, X. Xie, A.-P. Li, X. Wang, Nat. Rev. Phys. 2021, 3, 791.
- 2M. Di Ventra, S. T. Pantelides, N. D. Lang, Phys. Rev. Lett. 2000, 84, 979.
- 3S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, H. Sirringhaus, Nat. Mater. 2020, 19, 491.
- 4N. Xin, C. Jia, J. Wang, S. Wang, M. Li, Y. Gong, G. Zhang, D. Zhu, X. Guo, J. Phys. Chem. Lett. 2017, 8, 2849.
- 5Y. Li, P. Doak, L. Kronik, J. B. Neaton, D. Natelson, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1282.
- 6J. Liu, X. Huang, F. Wang, W. Hong, Acc. Chem. Res. 2019, 52, 151.
- 7Y. Kim, K. Im, H. Song, Materials 2022, 15, 774.
- 8P. W. Fowler, B. T. Pickup, T. Z. Todorova, Pure Appl. Chem. 2011, 83, 1515.
- 9P. W. Fowler, B. T. Pickup, T. Z. Todorova, W. Myrvold, J. Chem. Phys. 2009, 131, 044104.
- 10M. Mandado, N. Ramos-Berdullas, J. Comput. Chem. 2014, 35, 1261.
- 11P. W. Fowler, B. T. Pickup, T. Z. Todorova, W. Myrvold, J. Chem. Phys. 2009, 131, 244110.
- 12P. W. Fowler, B. T. Pickup, T. Z. Todorova, Chem. Phys. Lett. 2008, 465, 142.
- 13M. Taniguchi, Phys. Chem. Chem. Phys. 2019, 21, 9641.
- 14H. Chen, V. Brasiliense, J. Mo, L. Zhang, Y. Jiao, Z. Chen, L. O. Jones, G. He, Q.-H. Guo, X.-Y. Chen, B. Song, G. C. Schatz, J. F. Stoddart, J. Am. Chem. Soc. 2021, 143, 2886.
- 15A. Mukherjee, S. Ghule, K. Vanka, ChemPhysChem 2021, 22, 2484.
- 16F. Chen, N. J. Tao, Acc. Chem. Res. 2009, 42, 429.
- 17S. Amini, S. M. Azami, Int. J. Quantum Chem. 2020, 120, e26277.
- 18Q. Ke, J. Wang, J. Materiomics 2016, 2, 37.
- 19Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 2016, 45, 5925.
- 20X. Zhang, E. Marschewski, P. Penner, T. Weimann, P. Hinze, A. Beyer, A. Gölzhäuser, ACS Nano 2018, 12, 10301.
- 21T. Zhai, X. Lu, H. Wang, G. Wang, T. Mathis, T. Liu, C. Li, Y. Tong, Y. Li, Nano Lett. 2015, 15, 3189.
- 22A. Bezryadin, A. Belkin, E. Ilin, M. Pak, E. V. Colla, A. Hubler, Nanotechnology 2017, 28, 495401.
- 23D. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Nat. Mater. 2017, 16, 220.
- 24P. Simon, Y. Gogotsi, Nat. Mater. 2020, 19, 1151.
- 25Y. Gogotsi, ACS Nano 2014, 8, 5369.
- 26S. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nano Energy 2012, 1, 195.
- 27E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science 2019, 366, eaan8285.
- 28R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271.
- 29D. C. Grahame, Chem. Rev. 1947, 41, 441.
- 30S. R. Salehi, S. M. Azami, ChemistrySelect 2020, 5, 2954.
- 31J. Wang, S.-P. Feng, Y. Yang, N. Y. Hau, M. Munro, E. Ferreira-Yang, G. Chen, Nano Lett. 2015, 15, 5784.
- 32J. P. Baboo, S. Babar, D. Kale, C. Lekakou, G. M. Laudone, Nanomaterials 2021, 11, 2899.
- 33K. Kim, J. Park, J. Lee, S. Suh, W. Kim, ChemSusChem 2023, 16, e202202057.
- 34Z. Wang, Y. Yang, D. L. Olmsted, M. Asta, B. B. Laird, J. Chem. Phys. 2014, 141, 184102.
- 35R. Reece, C. Lekakou, P. A. Smith, ACS Appl. Mater. Interfaces 2020, 12, 25683.
- 36H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, P. Simon, Chem. Soc. Rev. 2020, 49, 3005.
- 37H. Wu, Y. Zhang, L. Cheng, L. Zheng, Y. Li, W. Yuan, X. Yuan, Energy Storage Mater. 2016, 5, 8.
- 38Y. Shim, Y. Jung, H. J. Kim, J. Phys. Chem. C 2011, 115, 23574.
- 39Y. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018, 118, 9233.
- 40T. Ramachandran, S. S. Sana, K. D. Kumar, Y. A. Kumar, H. H. Hegazy, S. C. Kim, J. Energy Storage 2023, 73, 109096.
- 41M. Vandana, K. Bijapur, G. Soman, G. Hegde, Crit. Rev. Solid State Mater. Sci. 2023, 1.
- 42J. Cherusseri, D. Pandey, J. Thomas, Batteries Supercaps 2020, 3, 860.
- 43N. Wu, X. Bai, D. Pan, B. Dong, R. Wei, N. Naik, R. R. Patil, Z. Guo, Adv. Mater. Interfaces 2021, 8, 2821.
- 44J. Gu, C. Jin, Z. Bian, X. Liu, S. Li, S. Tang, D. Yuan, J. Nanopart. Res. 2017, 19, 1.
- 45J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632.
- 46T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao, F. Gao, Sci. Rep. 2016, 6, 23289.
- 47B. Zhang, S. Song, W. Li, L. Zheng, X. Ma, Ionics 2021, 27, 3553.
- 48C. J. Lambert, Chem. Soc. Rev. 2015, 44, 875.
- 49M. Thoss, F. Evers, J. Chem. Phys. 2018, 148, 030901.
- 50Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.
- 51M. Galperin, M. A. Ratner, A. Nitzan, J. Phys.: Condens. Matter 2007, 19, 103201.
- 52A. S. Blum, C. M. Soto, K. E. Sapsford, C. D. Wilson, M. H. Moore, B. R. Ratna, Biosens. Bioelectron. 2011, 26, 2852.
- 53M. Ernzerhof, M. Zhuang, P. Rocheleau, J. Chem. Phys. 2005, 123, 134704.
- 54D. Vuillaume, S. Lenfant, Microelectron. Eng. 2003, 70, 539.
- 55S. V. Kilina, P. K. Tamukong, D. S. Kilin, Acc. Chem. Res. 2016, 49, 2127.
- 56E. P. Hoy, D. A. Mazziotti, T. Seideman, J. Chem. Phys. 2017, 147, 184110.
- 57S. Gil-Guerrero, N. Otero, Á. Peña-Gallego, M. Mandado, J. Phys. Chem. C 2020, 124, 17924.
- 58M. L. Perrin, E. Galán, R. Eelkema, J. M. Thijssen, F. Grozema, H. S. J. Van Der Zant, Nanoscale 2016, 8, 8919.
- 59H. Wang, S. Hu, K. Takahashi, X. Zhang, H. Takamatsu, J. Chen, Nat. Commun. 2017, 8, 15843.
- 60S. M. Azami, M. Kheirmand, J. Phys. Chem. A 2023, 127, 5760.
- 61W. G. Van Der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, L. P. Kouwenhoven, Rev. Mod. Phys. 2002, 75, 1.
- 62J. Chen, X. Y. He, K. H. Wu, Z. Q. Ji, L. Lu, J. R. Shi, J. H. Smet, Y. Q. Li, Phys. Rev. B 2011, 83, 241304.
- 63K. Braun, O. Hauler, D. Zhang, X. Wang, T. Chassé, A. J. Meixner, J. Am. Chem. Soc. 2021, 143, 1816.
- 64K. Wang, B. Xu, Top. Curr. Chem. 2017, 375, 17.
- 65S. Fakhraee, S. M. Azami, J. Chem. Phys. 2009, 130, 084113.
- 66F. Ghanavati, S. M. Azami, Mol. Phys. 2017, 115, 743.
- 67I. Ravaei, S. M. Azami, J. Comput. Chem. 2020, 41, 2446.
- 68T. L. Beck, Phys. Chem. Chem. Phys. 2015, 17, 31472.
- 69D. Hong, W. Zeng, Z.-T. Liu, F.-S. Liu, Q.-J. Liu, J. Phys. Chem. A 2023, 127, 5140.
- 70J. H. Chang, A. Huzayyin, K. Lian, F. Dawson, Phys. Chem. Chem. Phys. 2015, 17, 588.
- 71N. Ramos-Berdullas, S. Gil-Guerrero, M. Mandado, Int. J. Quantum Chem. 2018, 118, e25651.
- 72A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H.-J. Bungartz, H. Lederer, J. Phys.: Condens. Matter 2014, 26, 213201.
- 73Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- 74W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- 75M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford, CT 2009.
- 76S. M. Azami, Densitizer Ver. 2.0.0. https://orbital.xyz (accessed: February 2023)
- 77Y. Baskin, L. Meyer, Phys. Rev. 1955, 100, 544.
- 78X. Chen, F. Tian, C. Persson, W. Duan, N. X. Chen, Sci. Rep. 2013, 3, 3046.
- 79F. Parhizgar, A. Qaiumzadeh, R. Asgari, Phys. Rev. B 2017, 96, 075447.
10.1103/PhysRevB.96.075447 Google Scholar
- 80H. Li, X. Yu, X. Shen, G. Tang, K. Han, J. Phys. Chem. C 2019, 123, 20020.
- 81T. Wollandt, S. Mangel, J. Kussmann, C. C. Leon, A. Scavuzzo, C. Ochsenfeld, K. Kern, S. J. Jung, J. Phys. Chem. C 2023, 127, 4326.
- 82S. de-la-Huerta-Sainz, A. Ballesteros, N. A. Cordero, Nanomaterials 2022, 12, 1953.
- 83S. de-la-Huerta-Sainz, A. Ballesteros, N. A. Cordero, Micromachines 2023, 14, 2035.