A post-HF study on the halogen bonding interaction of pyrene with diatomic halogen molecules
Berkay Sütay
Department of Chemistry, Istanbul Technical University, Istanbul, 34469 Turkey, Maslak
Search for more papers by this authorCorresponding Author
Mine Yurtsever
Department of Chemistry, Istanbul Technical University, Istanbul, 34469 Turkey, Maslak
Fax: +90-212-2856386 E-mail: [email protected]Search for more papers by this authorErsin Yurtsever
Department of Chemistry, Koc University, Sariyer, Istanbul, 34450 Turkey
Search for more papers by this authorBerkay Sütay
Department of Chemistry, Istanbul Technical University, Istanbul, 34469 Turkey, Maslak
Search for more papers by this authorCorresponding Author
Mine Yurtsever
Department of Chemistry, Istanbul Technical University, Istanbul, 34469 Turkey, Maslak
Fax: +90-212-2856386 E-mail: [email protected]Search for more papers by this authorErsin Yurtsever
Department of Chemistry, Koc University, Sariyer, Istanbul, 34450 Turkey
Search for more papers by this authorAbstract
We present a detailed SCS-MP2 study on the potential energy curves (PEC) for interactions between diatomic halogen molecules and pyrene. BSSE corrected CCSD[T] energies at equilibrium distances are computed and compared to CCSD(T) energies. The most stable conformation of these weakly bound van der Waals complexes is almost linear in the perpendicular direction to the pyrene plane. The complexes of highly polarizable bromine and iodine molecules with pyrene are very stable and they carry rather large number of vibrational states. Despite its small size, F2 also forms strong halogen bonding similar to Br2 and I2. The interaction between Cl2 and pyrene is the weakest and it is attributed to the highest polarizability/molar mass ratio of chlorine among the others. I2-pyrene is found to be the most stable complex due to the strongest mutual polarization effects and is carrying more than 60 vibrational states. Due to the rather large number of electrons in some complexes, the relativistic corrections are also considered. © 2016 Wiley Periodicals, Inc.
References
- 1 K. Müller-Dethlefs, P. Hobza, Chem. Rev 2000, 100, 143.
- 2 Y. Zhao, D. G. Truhlar, Acc. Chem. Res 2008, 41, 157.
- 3 H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S. I. Simak, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett 2003, 91, 126402.
- 4 H. L. Williams, C. F. Chabalowski, J. Phys. Chem. A 2001, 105, 646.
- 5 G. Jansen, A. Haßelmann, J. Phys. Chem. A 2001, 105, 11156.
- 6 A. Haßelmann, G. Jansen, Chem. Phys. Lett. 2002, 357, 464.
- 7 A. Haßelmann, G. Jansen, Chem. Phys. Lett. 2002, 362, 319.
- 8 A. Haßelmann, G. Jansen, Chem. Phys. Lett. 2003, 367, 778.
- 9 S. Grimme, C. Mück-Lichtenfeld, J. J. Antony, Phys. Chem. C 2007, 111, 11199.
- 10 P. Politzer, K. E. Riley, F. A. Bulat, J. S. Murray, Comp. Theor. Chem. 2012, 998, 2.
- 11 P. Politzer, J. S. Murray, ChemPhysChem 2013, 14, 278.
- 12 P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2013, 15, 11.
- 13 P. Hobza, Ed. Phys. Chem. Chem. Phys. 2008, 10, 19, 2561–2868
- 14 P. Politzer, J. S. Murray, T. Clark, J. Mol. Mod 2015, 21, 52.
- 15 P. Politzer, J. S. Murray, T. Clark, Top. Curr. Chem. 2015, 358, 19.
- 16 Y. Lu, J. Zou, H. Wang, Q. Yu, H. Zhang, Y. Jiang, J. Phys. Chem. A 2005, 109, 11956.
- 17 F. F. Wang, J. H. Hou, Z. R. Li, D. Wu, W. Li, Z. Y. Lu, W. L. Cao, J. Chem. Phys. 2007, 126, 144301.
- 18 B. Sütay, M. Yurtsever, E. Yurtsever, J. Mol. Model. 2014, 20, 2445.
- 19 A. J. Stone, The Theory of Intermolecular Forces; Oxford University Press: Oxford, 1997.
- 20 E. Widenkvist, D. W. Boukhvalov, S. Rubino, S. Akhtar, J. Lu, R. A. Quinlan, M. I. Katsnelson, K. Leifer, H. Grennberg, U. Jansson, J. Phys. D 2009, 42, 112003.
- 21 P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc Natl Acad Sci USA 2004, 101, 16789.
- 22 P. Metrangolo, H. Neukirsch, T. Pilati, G. Resnati, Acc. Chem. Res. 2005, 38, 386.
- 23 T. Imakubo, H. Sawa, R. Kato, Synth. Met. 1995, 73, 117.
- 24 V. Amico, S. V. Meille, E. Corradi, M. T. Messina, G. Resnati, J. Am. Chem. Soc. 1998, 120, 8261.
- 25 A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
- 26 C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
- 27 J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, B. H. Weiller, ACS Nano. 2009, 3, 301.
- 28 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 2000, 287, 622.
- 29 S. M. Lee, Y. H. Lee, Appl. Phys. Lett 2000, 76, 2877.
- 30 X. Y. Zhu, S. M. Lee, Y. H. Lee, T. Frauenheim, Phys. Rev. Lett. 2000, 85, 2757.
- 31 S. H. Jhi, S. G. Louie, M. L. Cohen, Phys. Rev. Lett 2000, 85, 1710.
- 32 H. Chang, J. L. Do, S. L. Mi, Y. Hee, Appl. Phys. Lett. 2001, 79, 3863.
- 33 J. Zhao, A. Buldum, J. Han, J. P. Lu, Nanotechnology 2002, 13, 195.
- 34 O. Leenaerts, B. Partoens, F. M. Peeters, Phys. Rev. B 2008, 77, 125416.
- 35 S. Chen, W. Cai, D. Chen, Y. Ren, X. Li, Y. Zhu, J. Kang, R. S. Ruoff, New J. Phys. 2010, 12, 125011 .
- 36 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nat. Mater. 2007, 6, 652.
- 37 J. A. Robinson, E. S. Snow, S. C. Badescu, T. L. Reinecke, F. K. Perkins, Nano Lett. 2006, 6, 1747.
- 38 A. G. Donchev, J. Chem. Phys. 2007, 126, 124706.
- 39 P. V. C. Medeiros, A. J. S. Mascarenhas, M. F. de Brito, C. M. C. de Castilho, Nanotechnology 2010, 21, 485701.
- 40 S. Ghosh, S. R. K. C. S. Yamijala, S. K. Pati, C. N. R. Rao, RSC Adv. 2012, 2, 1181.
- 41 E. Yurtsever, J. Phys. Chem. A 2009, 113, 924.
- 42 H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, G.Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, MOLPRO, version 2009.1, A Package of Ab Initio Programs. Available at: http://www.molpro.net.
- 43In NIST Standard Reference Database Number 69; W. F. Howard, L. Andrews L, Eds.; National Institute of Standards and Technology: Gaithersburg, MD; pp. 20899. Available at: http://webbook.nist.gov.
- 44 S. Grimme, J. Comput. Chem. 2004, 25, 1463.
- 45 S. Grimme, J. Comput. Chem. 2006, 27, 1787.
- 46 S. Grimme, J. Chem. Phys 2003, 118, 9095.
- 47 B. Sütay, A. Tekin, M. Yurtsever, Theor. Chem. Acc. 2012, 2, 1120.
- 48 A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 1993, 80, 1431.
- 49 M. Reiher, A. Wolf, J. Chem. Phys 2004, 121, 2037.
- 50 P. Hobza, J. Rezac, L. Simova, J. Chem. Theor. Comput. 2012, 9, 364.
- 51 M. Urban, J. Noga, S. J. Cole, R. J. J. Bartlett, J. Chem. Phys 1986, 83, 4041.
- 52 A. N. Rudenko, F. J. Keil, M. I. Katsnelson, A. I. Lichtenstein, Phys. Rev. B 2010, 82, 035427.
- 53 W. L. Luken, Croatica Chem. Acta 1984, 57, 1283.
- 54 J. G. Angyan, J. Chem. Phys. 2007, 127, 024108.
- 55 P. Hobza, J. Rezac, J. Chem. Theor. Comput. 2013, 9, 2151.
- 56 L. Visscher, K. G. Dyall, J. Chem. Phys 1996, 104, 9040.
- 57LEVEL Program, Version 8.0, R.J. Le Roy 519: 888:4051. Available at: http://leroy.uwaterloo.ca/programs/