Toward anharmonic computations of vibrational spectra for large molecular systems
Corresponding Author
Vincenzo Barone
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, Italy
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, ItalySearch for more papers by this authorCorresponding Author
Malgorzata Biczysko
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, Italy
Dipartimento di Chimica “Paolo Corradini” and INSTM M3-Village Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, via Cintia, 80126 Napoli, Italy
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, ItalySearch for more papers by this authorCorresponding Author
Julien Bloino
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, Italy
Dipartimento di Chimica “Paolo Corradini” and INSTM M3-Village Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, via Cintia, 80126 Napoli, Italy
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, ItalySearch for more papers by this authorMonika Borkowska-Panek
Faculty of Chemistry, University of Wroclaw, ul. Joliot-Curie 14, Wroclaw, Poland
Search for more papers by this authorIvan Carnimeo
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, Italy
Search for more papers by this authorPawel Panek
Faculty of Chemistry, University of Wroclaw, ul. Joliot-Curie 14, Wroclaw, Poland
Search for more papers by this authorCorresponding Author
Vincenzo Barone
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, Italy
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, ItalySearch for more papers by this authorCorresponding Author
Malgorzata Biczysko
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, Italy
Dipartimento di Chimica “Paolo Corradini” and INSTM M3-Village Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, via Cintia, 80126 Napoli, Italy
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, ItalySearch for more papers by this authorCorresponding Author
Julien Bloino
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, Italy
Dipartimento di Chimica “Paolo Corradini” and INSTM M3-Village Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, via Cintia, 80126 Napoli, Italy
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, ItalySearch for more papers by this authorMonika Borkowska-Panek
Faculty of Chemistry, University of Wroclaw, ul. Joliot-Curie 14, Wroclaw, Poland
Search for more papers by this authorIvan Carnimeo
Scuola Normale Superiore and INSTM M3-Village, piazza dei Cavalieri 7, 56126 Pisa, Italy
Search for more papers by this authorPawel Panek
Faculty of Chemistry, University of Wroclaw, ul. Joliot-Curie 14, Wroclaw, Poland
Search for more papers by this authorAbstract
The subtle interplay of several different effects makes the interpretation and analysis of experimental spectra in terms of structural and dynamic characteristics a very challenging task. In this context, theoretical studies can be very helpful, and this is the reason behind the rapid evolution of computational spectroscopy from a highly specialized research field toward a versatile and widespread tool. However, in the case of vibrational spectra of large molecular systems, the most popular approach still relies on a harmonic treatment, because of the difficulty to explore the multidimensional anharmonic potential energy surface. These can be overcome considering that, in many cases, the vibrational transitions are well localized and only some of them are observed experimentally. To this aim, the procedure for the simulation of vibrational spectra of large molecular systems beyond the harmonic approximation is discussed. The quality of system-specific reduced dimensional anharmonic approaches is first validated by comparison with computations taking into account all modes simultaneously for anisole and glycine. Next, the approach is applied to two larger systems, namely glycine adsorbed on a silicon surface and chlorophyll-a in solution, and the results are compared with experimental data showing significant improvement over the standard harmonic approximation. Our results show that properly tailored reduced dimension anharmonic approaches stand as feasible routes for state-of-the-art computational spectroscopy studies and allow to take into account both anharmonic and environmental effects on the spectra even for relatively large molecular systems. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
References
- 1 P. Jensen; P. R. Bunker, Eds. Computational Molecular Spectroscopy; Wiley: UK, 2000.
- 2 Matyus, E.; Czako, G.; Csaszar, A. J Chem Phys 2009, 130, 134112.
- 3 Cappelli, C.; Biczysko, M. In Computational Strategies for Spectroscopy, from Small Molecules to Nano Systems; V. Barone, Ed.; Wiley: Hoboken, NJ, 2011.
- 4 Pedone, A.; Biczysko, M.; Barone, V. Comput Phys Commun 2010, 11, 1812.
- 5 Vreven, T.; Morokuma, K. J Comput Chem 2000, 21, 1419.
- 6 Vreven, T.; Morokuma, K.; Farkas, O.; Schlegel, H. B.; Frisch, M. J. J Comput Chem 2003, 24, 760.
- 7 Rega, N.; Iyengar, S. S.; Voth, G. A.; Schlegel, H. B.; Vreven, T.; Frisch, M. J. J Phys Chem B 2004, 108, 4210.
- 8 Barone, V.; Biczysko, M.; Brancato, G. Adv Quantum Chem 2010, 59, 17.
- 9 Cappelli, C.; Monti, S.; Scalmani, G.; Barone, V. J Chem Theory Comput 2010, 6, 1660.
- 10 Begue, D.; Carbonniere, P.; Barone, V.; Pouchan, C. Chem Phys Lett 2005, 416, 206.
- 11 Hirata, S.; Yagi, K. Chem Phys Lett 2008, 464, 123.
- 12 Braams, B. J.; Bowman, J. M. Int Rev Phys Chem 2009, 28, 577.
- 13 Sparta, M.; Høyvik, I.; Toffoli, D.; Christiansen, O. J Phys Chem A 2009, 113, 8712.
- 14 Pele, L.; Gerber, R. J Chem Phys 2008, 128, 165105.
- 15 Carter, S.; Handy, C. Chem Phys Lett 2002, 352, 1.
- 16 Bowman, J. M. Science 2000, 290, 724.
- 17 Bowman, J. M.; Carter, S.; Huang, X. Int Rev Phys Chem 2003, 22, 533.
- 18 Carter, S.; Handy, N. J Chem Phys 2000, 113, 987.
- 19 Chaban, J.; Jung, J.; Gerber, R. J Chem Phys 1999, 111, 1823.
- 20 Yagi, K.; Taketsugu, T.; Hirao, K.; Gordon, M. S. J Chem Phys 2000, 113, 1005.
- 21 Rauhut, G.; Pulay, P. J Phys Chem 1995, 99, 3093.
- 22 Rauhut, G.; Hrenar, T. Chem Phys 2008, 346, 160.
- 23 Christiansen, O. Phys Chem Chem Phys 2007, 9, 2942.
- 24 Norris, L. S.; Ratner, M. A.; Roitberg, A. E.; Gerber, R. B. J Chem Phys 1996, 105, 11261.
- 25 Christiansen, O. J Chem Phys 2003, 119, 5773.
- 26 Carter, S.; Sharma, A. R.; Bowman, J. M.; Rosmus, P.; Tarroni, R. J Chem Phys 2009, 131, 224106.
- 27 Christiansen, O. J Chem Phys 2004, 120, 2149.
- 28 Pouchan, C.; Zaki, K. J Chem Phys 1997, 107, 342.
- 29 Carbonniere, P.; Dargelos, A.; Pouchan, C. Theor Chim Acta 2010, 125, 543.
- 30 Mills, I. M. Molecular Spectroscopy: Modern Research; Academic: press: New York, 1972.
- 31 Amos, R. D.; Handy, N. C.; Green, W. H.; Jayatilaka, D.; Willets, A.; Palmieri, P. J Chem Phys 1991, 95, 8323.
- 32 Gaw, F.; Willetts, A.; Handy, N. C.; Green, W. In Advances in Molecular Vibrations and Collision Dynamics; JAI Press: Greenwich, CT, 1990.
- 33 Barone, V. J Chem Phys 2005, 122, 014108.
- 34 Barone, V. J Chem Phys 2004, 120, 3059.
- 35 Martin, J. M. L.; Lee, T. J.; Taylor, P. R.; Francois, J.-P. J Chem Phys 1995, 103, 2589.
- 36 Stanton, J. F.; Gauss, J. J Chem Phys 1998, 108, 9218.
- 37 Tew, D. P.; Klopper, W.; Heckert, M.; Gauss, J. J Phys Chem A 2007, 111, 11242.
- 38 Ruud, K.; Taylor, P. R.; Helgaker, T. J Chem Phys 2003, 119, 1951.
- 39 Ruud, K.; Åstrand, P. O.; Taylor, P. R. J Chem Phys 2000, 112, 2668.
- 40 Vazquez, J.; Stanton, J. F. Mol Phys 2006, 104, 377.
- 41 Vazquez, J.; Stanton, J. F. Mol Phys 2007, 105, 101.
- 42 Stanton, J. F.; Gauss, J. Int Rev Phys Chem 2000, 19, 61.
- 43 Bloino, J.; Guido, C.; Lipparini, F.; Barone, V. Chem Phys Lett 2010, 496, 157.
- 44 Miani, E.; Can, E.; Palmieri, P.; Trombetti, A.; Handy, N. C. J Chem Phys 2000, 112, 248.
- 45 Burcl, R.; Handy, N. C.; Carter, S. Spectrochim Acta A 2003, 59, 1881.
- 46 Boese, A. D.; Martin, J. J Phys Chem A 2004, 108, 3085.
- 47 Barone, V. J Phys Chem A 2004, 108, 4146.
- 48 Barone, V.; Festa, G.; Grandi, A.; Rega, N.; Sanna, N. Chem Phys Lett 2004, 388, 279.
- 49 Biczysko, M.; Panek, P.; Barone, V. Chem Phys Lett 2009, 475, 105.
- 50 Bloino, J.; Biczysko, M.; Crescenzi, O.; Barone, V. J Chem Phys 2008, 128, 244105.
- 51 Becke, A. D. J Chem Phys 1993, 98, 5648.
- 52 Carbonniere, P.; Lucca, T.; Pouchan, C.; Rega, N.; Barone, V. J Comput Chem 2005, 26, 384.
- 53 Boese, A. D.; Martin, J. J Phys Chem A 2004, 108, 3085.
- 54 Barone, V. Chem Phys Lett 2004, 383, 528.
- 55 Barone, V.; Grandi, A.; Rega, N.; Sanna, N. Chem Phys Lett 2004, 388, 279.
- 56 Barone, V.; Bloino, J.; Biczysko, M. Phys Chem Chem Phys 2010, 12, 1092.
- 57 Puzzarini, C.; Biczysko, M.; Barone, V. J Chem Theory Comput 2010, 6, 828.
- 58 Grimme, S. J Chem Phys 2006, 124, 034108/1–16.
- 59 Neese, F.; Schwabe, T.; Grimme, S. J Chem Phys 2007, 126, 124115.
- 60 Biczysko, M.; Panek, P.; Scalmani, G.; Bloino, J.; Barone, V. J Chem Theory Comput 2010, 6, 2115.
- 61 Kozuch, S.; Gruzman, D.; Martin, J. M. L. J Phys Chem C 2010, 114, 20801.
- 62 Begue, D.; Carbonniere, P.; Pouchan, C. J Phys Chem A 2005, 109, 4611.
- 63 Begue, D.; Benidar, A.; Pouchan, C. Chem Phys Lett 2006, 430, 215.
- 64 Puzzarini, C.; Barone, V. J Chem Phys 2008, 129, 084306/1–7.
- 65 Puzzarini, C.; Barone, V. Phys Chem Chem Phys 2008, 10, 6991.
- 66 Kuhler, K. M.; Truhlar, D. G.; Isaacson, A. D. J Chem Phys 1996, 104, 4664.
- 67 Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem Phys Lett 1990, 172, 62.
- 68 Barone, V.; Cimino, P.; Stendardo, E. J Chem Theory Comput 2008, 4, 751.
- 69 Barone, V.; Cimino, P. Chem Phys Lett 2008, 454, 139.
- 70 Barone, V.; Cimino, P. J Chem Theory Comput 2009, 5, 192.
- 71 Double and triple-ζ basis sets of N07 family, are available for download, visit http://idea.sns.it (accessed April 20, 2011).
- 72 Barone, V.; Biczysko, M.; Cimino, P. In Carbon-Centered Free Radicals and Radical Cations; M. D. E. Forbes, Ed.; Willey: Hoboken, NJ, 2010; pp 105–139.
- 73 Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J Comput Chem 2003, 24, 669.
- 74 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
- 75 Hoffmann, L. J. H.; Marquardt, S.; Gemechu, A. S.; Baumgärtel, H. Phys Chem Chem Phys 2006, 8, 2360.
- 76 Balfour, W. J. Spectrochim Acta Part A 1983, 39, 795.
- 77 Chaban, G.; Jung, J.; Gerber, R. J Phys Chem A 2000, 104, 10035.
- 78
Bludsky, O.; Chocholousova, J.; Vacek, J.; Huisken, F.; P., H.
J Chem Phys
2000,
113,
11.
10.1063/1.1288914 Google Scholar
- 79 Espinoza, C.; Szczepanski, J.; Vala, M.; Polfer, N. J Phys Chem A 2010, 114, 5919.
- 80 Carnimeo, I; Biczysko, M.; Bloino, J.; Barone, V. Phys Chem Chem Phys 2011, 13. In press.
- 81 Huisken, F.; Werhahn, O.; Ivanov, A.; Krasnokutski, S. J Chem Phys 1999, 111, 7.
- 82 Stepanian, S.; Reva, I.; Radchenko, E.; Rosado, M.; Duarte, M.; Fausto, R.; Adamowicz, L. J Phys Chem A 1998, 102, 1041.
- 83 Espinoza, C.; Szczepanski, J.; Vala, M.; Polfer, N. J Phys Chem A 2010, 114, 5919.
- 84 Shemesh, D.; Mullin, J.; Gordon, M.; Gerber, R. Chem Phys 2008, 347, 218.
- 85 Lopez, A.; Heller, T.; Bitzer, T.; Richardson, N. Chem Phys 2002, 277, 1.
- 86 Vassiliev, S.; Bruce, D. Photosynth Res 2008, 97, 75.
- 87 Loll, B.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J. Nature 2005, 438, 1040.
- 88 Nelson, N.; Yocum, C. F. Annu Rev Plant Biol 2006, 57, 521.
- 89 Muller, M. G.; Slavov, C.; Luthra, R.; Redding, K. E.; Holzwarthet, A. R. Proc Natl Acad Sci 2010, 107, 4123.
- 90 Wang, R.; Parameswaran, S.; Hastings, G. Vib Spectrosc 2007, 44, 357.
- 91 Parameswaran, S.; Wang, R.; Hastings, G. J Phys Chem B 2008, 112, 14056.
- 92 Nabedryk, E.; Leonhard M., W., Mantele; Breton, J. Biochemistry 1990, 29, 3242.