Theoretical study on structures and vibrational spectra of M+(H2O)Ar (M = Cu, Ag, Au)
Xiudan Song
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of China
College of Physical Science and Technology, Heilongjiang University, Harbin, Heilongjiang Province 150080, People's Republic of China
Search for more papers by this authorCorresponding Author
Yongfang Zhao
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of China
Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of ChinaSearch for more papers by this authorPingxia Zhang
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of China
Search for more papers by this authorGuohua Zhang
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of China
Search for more papers by this authorXiudan Song
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of China
College of Physical Science and Technology, Heilongjiang University, Harbin, Heilongjiang Province 150080, People's Republic of China
Search for more papers by this authorCorresponding Author
Yongfang Zhao
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of China
Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of ChinaSearch for more papers by this authorPingxia Zhang
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of China
Search for more papers by this authorGuohua Zhang
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, People's Republic of China
Search for more papers by this authorAbstract
A theoretical study on the structures and vibrational spectra of M+(H2O)Ar0-1 (M = Cu, Ag, Au) complexes was performed using ab initio method. Geometrical structures, binding energies (BEs), OH stretching vibrational frequencies, and infrared (IR) absorption intensities are investigated in detail for various isomers with Ar atom bound to different binding sites of M+(H2O). CCSD(T) calculations predict that BEs are 14.5, 7.5, and 14.4 kcal/mol for Ar atom bound to the noble metal ion in M+(H2O)Ar (M = Cu, Ag, Au) complexes, respectively, and the corresponding values have been computed to be 1.5, 1.3, and 2.1 kcal/mol when Ar atom attaches to a H atom of water molecule. The former structure is predicted to be more stable than the latter structure. Moreover, when compared with the M+(H2O) species, tagging Ar atom to metal cation yields a minor perturbation on the IR spectra, whereas binding Ar atom to an OH site leads to a large redshift in OH stretching vibrations. The relationships between isomers and vibrational spectra are discussed. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
References
- 1 Marcus, Y. Ion Solvation; Wiley: Chichester, UK, 1985.
- 2
Burgess, J.
Ions in Solution;
Horwood Publishing:
Chichester, UK,
1999.
10.1533/9781782420569 Google Scholar
- 3 O'Brien, J. T.; Williams, E. R. J Phys Chem A 2008, 112, 5893.
- 4 Feller, D.; Glendening, E. D.; de Dong, W. D. J Chem Phys 1999, 110, 1475.
- 5 Lee, E. C.; Lee, H. M.; Tarakeshwar, P.; Kim, K. S. J Chem Phys 2003, 119, 7725.
- 6 Hrusák, J.; Hertwig, R. H.; Schröder, D.; Schwerdtfeger, P.; Koch, W.; Schwarz, H. Organometallics 1995, 14, 1284.
- 7 Lee, H. M.; Min, S. K.; Lee, E. C.; Min, J.-H.; Odde, S.; Kim, K. S. J Chem Phys 2005, 122, 064314.
- 8 Castleman, A. W.; Keesee, R. G., Jr. Chem Rev (Washington, DC) 1986, 86, 589.
- 9 Märk, T. D. Int J Mass Spectrom Ion Process 1987, 79, 1.
- 10 Magnera, T. F.; David, D. E.; Stulik, D.; Orth, R. G.; Jonkman, H. T.; Michl, J. J Am Chem Soc 1989, 111, 5036.
- 11 Dalleska, N. F.; Honma, K.; Sunderlin, L. S.; Armentrout, P. B. J Am Chem Soc 1994, 116, 3519.
- 12 Lessen, D. E.; Asher, R. L.; Brucat, P. J. J Chem Phys 1990, 93, 6102.
- 13 Duncan, M. A. Annu Rev Phys Chem 1997, 48, 69.
- 14 Misaizu, F.; Tsukamato, K.; Sanekata, M.; Fuke, K. Laser Chem 1995, 15, 195.
- 15 Lisy, J. M. Int Rev Phys Chem 1997, 16, 267.
- 16 Cabarcos, O. M.; Weinheimer, C. J.; Lisy, J. M. J Chem Phys 1999, 110, 8429.
- 17 Vaden, T. D.; Forinash, B.; Lisy, J. M. J Chem Phys 2002, 117, 4628.
- 18 Walters, R. S.; Jaeger, T.; Duncan, M. A. J Phys Chem A 2002, 106, 10482.
- 19 Duncan, M. A. Int Rev Phys Chem 2003, 22, 407.
- 20 Walker, N. R.; Walters, R. S.; Duncan, M. A. J Chem Phys 2004, 120, 10037.
- 21 Walker, N. R.; Walters, R. S.; Pillai, E. D.; Duncan, M. A. J Chem Phys 2003, 119, 10471.
- 22 Walters, R. S.; Duncan, M. A. Aust J Chem 2003, 57, 1145.
- 23 Walker, N. R.; Walters, R. S.; Tsai, M.-K.; Jordan, K. D.; Duncan, M. A. J Phys Chem A 2005, 109, 7057.
- 24 Walters, R. S.; Pillai, E. D.; Duncan, M. A. J Am Chem Soc 2005, 127, 16599.
- 25 Inokuchi, Y.; Ohshimo, K.; Misaizu, F.; Nishi, N. J Phys Chem 2004, 108, 5034.
- 26 Inokuchi, Y.; Ohshimo, K.; Misaizu, F.; Nishi, N. Chem Phys Lett 2004, 390, 140.
- 27 Iino, T.; Ohashi, K.; Mune, Y.; Inokuchi, Y.; Judai, K.; Nishi, N.; Sekiya, H. Chem Phys Lett 2006, 427, 24.
- 28 Iino, T.; Ohashi, K.; Inoue, K.; Judai, K.; Nishi, N.; Sekiya, H. Eur Phys J D 2007, 43, 37.
- 29 Iino, T.; Ohashi, K.; Inoue, K.; Judai, K.; Nishi, N. J Phys Chem 2007, 126, 194302.
- 30 Carnegie, P. D.; McCoy, A. B.; Duncan, M. A. J Phys Chem A 2009, 113, 4849.
- 31 Holland, P. M.; Castleman, A. W., Jr. J Am Chem Soc 1982, 76, 4195.
- 32 Armentrout, P. B. Acc Chem Res 1995, 28, 430.
- 33 Rodgers, M. T.; Armentrout, P. B. Mass Spectrom Rev 2000, 19, 215.
- 34 Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem Phys Lett 1990, 166, 275.
- 35 Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J Chem Phys 1987, 86, 866.
- 36 Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor Chim Acta 1990, 77, 123.
- 37 Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. J Chem Phys 1989, 91, 1762.
- 38 Pyykkö, P.; Runeberg, N.; Mendizabal, F. Chem Eur J 1997, 3, 1451.
- 39 Schröder, D.; Schwarz, H.; Schwarz, J.; Pyykkö, P. Inorg Chem 1998, 37, 624.
- 40 Boys, S. F.; Bernardi, F. Mol Phys 1970, 19, 553.
- 41 Tarakeshwar, P.; Kim, K. S. J Chem Phys 2000, 112, 1769.
- 42 Buchhold, K.; Reimann, B.; Djafari, S.; Barth, H.-D.; Brutschy, B. J Chem Phys 2000, 112, 1844.
- 43 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.,Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, Revision C. 02; Gaussian, Inc.: Wallingford, CT, 2004.
- 44 Shimanouchi, T. Molecular Vibrational Frequencies, In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P. J., Mallard, W. G. National Institute of Standards and Technology, Gaithersburg, MD, 20899, 2001 (http://webbook.nist.gov).
- 45 Seidel, S.; Seppelt, K. Science 2000, 290, 117.