Proton transfer at the carboxylic sites of amino acids: A single water molecule catalyzed process
Gang Yang
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
Search for more papers by this authorXiaomin Wu
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Search for more papers by this authorCorresponding Author
Yuangang Zu
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of ChinaSearch for more papers by this authorChengbu Liu
Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
Search for more papers by this authorYujie Fu
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Search for more papers by this authorLijun Zhou
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Search for more papers by this authorGang Yang
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
Search for more papers by this authorXiaomin Wu
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Search for more papers by this authorCorresponding Author
Yuangang Zu
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of ChinaSearch for more papers by this authorChengbu Liu
Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
Search for more papers by this authorYujie Fu
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Search for more papers by this authorLijun Zhou
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
Search for more papers by this authorAbstract
Ab initio calculations at MP2 level of theory were used to study the proton transfer at the carboxylic sites of amino acids, in the isolated, mono- and di-hydrated forms. In the case of water dimer, two interaction modes with glycine neutral structures (see Fig. 3) were explored, corresponding to the concerted and stepwise reaction pathways. Their transition states can be described as (H2OHOH2)+ [Fig. 4(a)] and (H2O---HOH2)+ [Fig. 4(b)], respectively. The energy analysis indicated that the concerted pathway is preferred. In the isolated, mono- and di-hydrated glycine complexes, the activation barriers of the proton transfer at the carboxylic sites were calculated to be 34.49, 16.59, and 13.36 kcal mol−1, respectively. It was thus shown that the proton transfer is significantly assisted and catalyzed by water monomer so that it can take place at room temperature. Instead, the further addition of water molecules plays solvent effects rather than catalytic effects to this proton transfer process. The above results obtained with discrete water molecules were supported by the solvent continuum calculated data. It was also observed that the heavy dependence of the solvent continuum models on dipole moments may produce misleading results. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009
References
- 1 Yu, X.; Hao, L.; Inesi, G. J Biol Chem 1994, 269, 16656.
- 2 Ban, F.; Kusalik, P.; Weaver, D. F. J Am Chem Soc 2004, 126, 4711.
- 3 Toyoshima, C.; Nomura, H. Nature 2002, 418 605.
- 4 Sugita, Y.; Miyashita, N.; Ikeguch, M.; Kidera, A.; Toyoshima, C. J Am Chem Soc 2005, 127, 6150.
- 5 Dreyer, M. K.; Schulz, G. E. J Mol Biol 1996, 259, 458.
- 6 Voth, G. A. Acc Chem Res 2006, 39, 143.
- 7 Császár, A. G. J Am Chem Soc 1992, 114, 9568.
- 8 Bouchonnet, S.; Hoppilliard, Y. Org Mass Spectrom 1992, 27, 71.
- 9 Hu, C. H.; Shen, M.; Schaefer, H. F., III. J Am Chem Soc 1993, 115, 2923.
- 10 Zhang, K.; Zimmerman, D. M.; Chung-Phillips, A.; Cassady, C. J. J Am Chem Soc 1993, 115, 10812.
- 11 Yu, D.; Rauk, A.; Armstrong, D. A. J Am Chem Soc 1995, 117, 1789.
- 12 Godfrey, P. D.; Brown, R. D. J Am Chem Soc 1995, 117, 2019.
- 13 Jensen, J. H.; Gordon, M. S. J Am Chem Soc 1995, 117, 8159.
- 14 Barone, V.; Adamo, C.; Lelj, F. J Chem Phys 1995, 102, 364.
- 15 Tortonda, F. R.; Pascual-Ahuir, J. L.; Silla, E.; Tuòón, I. Chem Phys Lett 1996, 260, 21.
- 16 Neville, J. J.; Zheng, Y.; Brion, C. E. J Am Chem Soc 1996, 118, 10533.
- 17
Hoyau, S.;
Ohanessian, G.
Chem Eur J
1998,
4,
1561.
10.1002/(SICI)1521-3765(19980807)4:8<1561::AID-CHEM1561>3.0.CO;2-Z CAS Web of Science® Google Scholar
- 18 Bonifačić, M.; Štefanić, I.; Hug, G. L.; Armstrong, D. A.; Asmus, K. D. J Am Chem Soc 1998, 120, 9930.
- 19 Zhang, K.; Chung-Phillips, A. J Comput Chem 1998, 19, 1862.
- 20 Wyttenbach, T.; Witt, M.; Bowers, M. T. J Am Chem Soc 2000, 122, 3458.
- 21 Gutowski, M.; Skurski, P.; Simons, J. J Am Chem Soc 2000, 122, 10159.
- 22 Remko, M.; Rode, B. M. Chem Phys Lett 2000, 316, 489.
- 23 Remko, M.; Rode, B. M. Phys Chem Chem Phys 2001, 3, 4667.
- 24 Croft, A. K.; Easton, C. J.; Radom, L. J Am Chem Soc 2003, 125, 4119.
- 25 Rulišek, L.; Havlas, Z. J Phys Chem B 2003, 107, 2376.
- 26 Chaudhari, A.; Sahu, P. K.; Lee, S. L. J Chem Phys 2004, 120, 170.
- 27 Remko, M.; Rode, B. M. Struct Chem 2004, 15, 223.
- 28 Constantino, E.; Rodriguez-Santiago, L.; Sodupe, M.; Tortajada, J. J Phys Chem A 2005, 109, 224.
- 29 Leung, K.; Rempe, S. B. J Chem Phys 2005, 122, 184506.
- 30 Falzon, C. T.; Wang, F. J Chem Phys 2005, 123, 214307.
- 31 Hattori, T.; Toraishi, T.; Tsuneda, T.; Nagasaki, S.; Tanaka, S. J Phys Chem A 2005, 109, 10403.
- 32 Remko, M.; Rode, B. J Phys Chem A 2006, 110, 1960.
- 33 Marino, T.; Toscano, M.; Russo, N.; Grand, A. J Phys Chem B 2006, 110, 24666.
- 34 Corral, L.; Mó, O.; Yáòez, M.; Moran, D.; Radom, L.; Salpin, J. Y.; Tortajada, J. Chem Eur J 2006, 12, 6787.
- 35 Yang, G.; Zu, Y. G.; Zhou, L. J. J Phys Org Chem 2008, 21, 34.
- 36 Slifkin, M. A.; Ali, S. M. J Mol Liq 1984, 28, 215.
- 37 Tortonda, F. R.; Silla, E.; Tuòón, I.; Rinaldi, D.; Ruiz-López, M. F. Theor Chem Acc 2000, 104, 89.
- 38 Wang, X. C.; Nichols, J.; Feyereisen, M.; Gutowski, M.; Boatz, J.; Haymet, A. D. J.; Simons, J. J Phys Chem 1991, 95, 10419.
- 39 Kallies, B.; Mitzner, R. J Mol Mod 1998, 4, 183.
- 40 Fu, A. P.; Li, H. L.; Du, D. M.; Zhou, Z. Y. Chem Phys Lett 2003, 382, 332.
- 41 Balta, B.; Aviyente, V. J Comput Chem 2004, 25, 690.
- 42 Markova, N.; Enchev, V.; Timtcheva, I. J Phys Chem A 2005, 109, 1981.
- 43 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A. 9 Gaussian, Inc.: Pittsburgh, PA, 1998.
- 44 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M. P.; Gill, M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03 Revision C. 02, Gaussian Inc.: Wallingford, CT, 2004.
- 45 Hall, N. E.; Smith, B. J. J Phys ChemA 1998, 102, 3985.
- 46 Selvarengan, P.; Kolandaivel, P. J Mol Struct Theochem 2002, 617, 99.
- 47 Yang, G.; Han, X. W.; Liu, X. M.; Yang, P. Y.; Zhou, Y. G.; Bao, X. H. J Phys Chem B 2005, 109, 18690.
- 48 Yang, G.; Zu, Y. G.; Liu, C. B.; Fu, Y. J.; Zhou, L. J. J Phys Chem B DOI: 10.1021/jp710394f.
- 49 Mietus, S.; Scrocco, E.; Tomasi, J. J Chem Phys 1981, 55, 117.
- 50 Cossi, M.; Barone, V.; Commi, R.; Tomasi, J. J Chem Phys 1996, 255, 327.
- 51 Wang, W. Z.; Zheng, W. X.; Pu, X. M.; Wong, N. B.; Tian, A. M. J Mol Struct Theochem 2002, 618, 235.